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Differentially rotating scalarized neutron stars can possess an enormous amount of angular momentum
larger than what could possibly be sustained in a neutron star in general relativity by about one order of
magnitude. A natural question to ask is whether these solutions are stable and thus can be realized in a
binary coalescence. With this motivation in mind, we examine the criterion of dynamical stability against
axisymmetric perturbations for these ultra-rotators by numerically tracking their nonlinear evolution in an
axisymmetric setup. We demonstrate that the turning-point criterion still serves as a sufficient condition for
axisymmetric stability within the accuracy of the performed simulations. Our findings open an interesting
question of whether the merger of two scalarized neutron stars can produce (possibly short-lived) ultra-
highly rotating merger remnants.
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I. INTRODUCTION

In the next (5th; expected to start in 2027) observing
run of the international gravitational wave (GW) network,
more binary neutron star (BNS) mergers are expected to be
witnessed. The improving sensitivity of the observatory,
especially the high-frequency band ≳103 Hz, is thought
promising to further resolve the waveforms produced in the
postmerger phases. Although certain important information
can already be acquired from the premerger waveforms
such as the bulk properties of the source and the adiabatic
tidal response of the neutron star (NS) members [1,2], the
postmerger segment of the waveforms delivers information
supplementary to the aforementioned ones [3–6]. In par-
ticular, the newly formed hypermassive NS (HMNS),
which is supported against radial collapse by differential
rotation, thermal pressure, and/or magnetic force, carries
rich information. For example, the oscillations frequencies
and the lifetime of HMNS are not only strongly tied to the

internal structure of the star (i.e., to the nuclear equation of
state (EOS); e.g., [7–12]), but are closely related to the
nature of gravity (e.g., [13,14]).
Scalar-tensor theories of gravity are among the most

natural and well-motivated alternatives to general relativity
(GR). Considering the Damour-Esposito-Farese type of
scalar-tensor theory (DEF theory hereafter), current pulsar
timing observations severely constrain the massless scalar
field sector of the theory [15] while only weak bounds can
be imposed in the massive case [16], namely a lower bound
of mϕ ≳ 10−15 eV [17,18] on the scalar mass. The con-
straint on mϕ can be pushed further by the null evidence
of scalarization in the detected waveform (≲500 Hz) of
GW170817 [19,20]. In particular, the progenitors of
GW170817 are unlikely to be scalarized if the scalar field
is massless [21,22], while a scalarized progenitor can still
be reconciled with the observed waveform if the scalar field
is sufficiently massive with > 10−12 eV [23,24]. On top of
binary systems dynamics, the x-ray pulse profiles emitted
by hot spots at NS surfaces infer the mass and radius of
NSs [25], which in turn can be used as an independent
probe to the EOS and gravitational nature [26–30].
Within the valid parameter space, Refs. [31–34] dem-

onstrated in a series of works the existence of stationary,
axisymmetric scalarized NSs with an angular momentum
exceeding the maximum in GR for a given EOS and
rotational law. Such superrotating NSs have very similar
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properties to the HMNSs produced after mergers of
BNS, which inherit most of the angular momentum of the
progenitor binary, thus spinning differentially at a large rate.
Although the maximal angular momentum of HMNSs
produced by the merger of nonspinning, quasicircular bina-
ries is roughly bounded as J ≲ 8 in GR (e.g, [35–37]), larger
values may be achievable in mergers of dynamically formed
binaries in globular clusters or mergers of NSs having
high spins.
The determination of stability of these super-rotating

scalarized NSs can be expected to limit the class of HMNSs
in the postmerger phase. The turning-point criterion has
been shown to be powerful in detecting secular instabilities
and in most cases, its results coincide with the ones from
perturbation analysis, i.e., the onset of instability is typi-
cally associated with an extremum of a properly chosen
function of the stellar equilibrium properties [38,39]. The
onset location of secular instability has also been studied
by numerical simulations [40–45], where the validity of
the turning-point criterion for uniformly rotating NSs is
confirmed.
Here, we briefly recap the turning-point criterion in

GR. For axisymmetric spinning NSs and assuming a
barotropic EOS, the gravitational mass MG of NSs with
either a fixed baryon number (N) or angular momentum
(J) can be parametrized by the central energy density ϵc,
i.e., MG ¼ MGðϵcÞ. The variations in these variables are
related via

dMG ¼ ΩdJ þ μdN; ð1Þ

where Ω is the angular velocity of the star, and μ is the
chemical potential. For the aforementioned one-parameter
sequence, the turning-point theorem states that the stable
segment is separated from the secularly unstable one by
the point where dJ=dϵc ¼ 0 or dN=dϵc ¼ 0 depending on
which sequence is in the context. The segment satisfying

dΩ
dϵc

dJ
dϵc

or
dμ
dϵc

dN
dϵc

> 0 ð2Þ

is on the unstable side [46]. From this, we see that the
onset of secular instability is marked by the turning-point
of MG along a one-parameter curve with a fixed J or total
baryon mass M0. In particular, for a sequence of equi-
libria with a fixed J, the tuning-point,

∂MGðϵcÞ
∂ϵc

����
J
¼ 0 ð3Þ

corresponds to the configuration having the maximal N
and thus M0, while the turning-point for a constant M0

sequence, i.e.,

∂MGðϵcÞ
∂ϵc

����
M0

¼ 0; ð4Þ

reflects the minimum of J [40]. A remark to be made is
that when deriving the theorem for uniformly rotating
equilibria, Friedman et al. [46] assumed that, due to
viscosity, uniformly rotating equilibria will never become
differentially rotating as the final state, i.e., the rotational
law can be maintained after the perturbation is damped by
viscosity. In other words, this criterion is established by
comparing neighboring, rigidly rotating configurations
along the one-parameter curve.
The applicability of this theorem to NSs obeying a

differential rotation law is not established analytically since
the rotational law may be altered by any perturbation. Thus,
the equilibria do not form a one-parameter family but rather
a family of infinite dimensions (to which a turning-point
theorem is still possible to hold in some form [39]). While
not shown analytically, numerical studies suggest that the
turning-point criterion approximately applies to differential
rotating NSs [47–49] in GR. In addition the complication of
rotational law, it is also uncertain how the theorem is
generalized to the (massive) DEF theory or alternative
theories of gravity in general. The goal here is to numeri-
cally examine the validity of the criterion in scalar-tensor
theories, focusing on high-J stars that have no counterparts
in GR, through axisymmetric simulations. In particular, we
will numerically evolve the stellar profiles to determine if
the configuration is stable to a random numerical pertur-
bation, or if some instabilities will operate so that the initial
state will migrate to a final state which may be another
neutron star configuration or a black hole.
This short paper is organized as follows: Section II

introduces the basic equations for constructing differen-
tially rotating, scalarized NSs and the scheme for axisym-
metric evolution. We provide the numerical results in
Sec. III and discuss them in Sec. IV. Unless specified
otherwise, we adopt the geometric unit of G ¼ c ¼ 1
throughout this paper, where G and c are the gravitational
constant and speed of light, respectively. The subscripts
a; b; c;… denote the spacetime coordinates while i; j; k;…
the spatial coordinates, respectively.

II. BASIC EQUATIONS

The Jordan frame action of the DEF theory is given
by [50]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

∇aϕ∇aϕ − UðϕÞ
�

− Smatter; ð5Þ

where R and g are, respectively, the Ricci scalar and the
determinant of the metric function gab, ∇a is the covariant
derivative associated with gab, ϕ is the scalar field, and
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Smatter is the action of matter. The coupling function, ωðϕÞ,
is expressed as [51–53]

1

ωðϕÞ þ 3=2
¼ B lnϕ; ð6Þ

with B being a dimensionless free parameter, and the
potential of the scalar field [23,54],

UðϕÞ ¼ 2m2
ϕφ

2ϕ2

B
; ð7Þ

gives rise to a mass term mϕ for the scalar field. In the
above expression, we have defined φ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2 lnϕ
p

. When
transformed into the mathematically convenient Einstein
frame by rephrasing the action (5) in terms of an auxiliary
metric gEab ¼ ϕgab, this potential can be shown to have the
form of V ¼ m2

ϕφ̄
2=2 with φ̄ ¼ φ=

ffiffiffiffi
B

p
. The meaning of

scalar mass then becomes clear. In a portion of the
literature, the factor between gab and gEab is referred to
as the coupling function. Under this context, the conven-
tional expression for the coupling function reads ϕ ¼ e−βφ̄

2

for β ¼ −B=2. The formulation for constructing initial data
in the considered theory will be described in Sec. II A. The
detailed setup of numerical evolution will then follow in
Sec. II B.

A. Profiles from RNS

A modified RNS code [55] for generating initial data of
equilibrium states of scalarized NSs in the DEF theory has
been developed in a series of works [31,33,34] from
simpler to more sophisticated rotation laws. The code uses
a modified [40] Komatsu-Eriguchi-Hachisu (KEH) [56]
scheme for constructing rotating equilibrium neutron star
models. For mathematical and numerical convenience, the
calculation of equilibrium models is performed in the so-
called Einstein frame, which is later transformed into the
physical Jordan frame used by the evolution code. The two
frames are related through a conformal transformation of
the metric, and a detailed discussion can be found in [31].
The modified RNS code adopts quasi-isotropic coordi-

nate, in which the metric is expressed in the spherical
coordinate ðr; θ;ϕÞ as [56–58]

ds2 ¼ −eηþσdt2 þ eη−σr2sin2θðdϕ2 −ϖdtÞ2
þ e2τðdr2 þ r2dθ2Þ

¼ −ðα2 − γϕϕϖ
2Þdt2 − 2ϖγϕϕdϕdtþ γijdxidxj; ð8Þ

where α and γij is the lapse function and spatial metric,
respectively. The shift vector βi is expressed as (see, e.g.,
Sec. 4 of [59])

βi ¼ −ϖð∂ϕÞi: ð9Þ

Here,ϖ is the frame-dragging factor, and the spatial metric
γij is

γij ¼ ψ4

0
B@

e−q 0 0

0 e−qr2 0

0 0 e2qr2 sin2 θ

1
CA

¼ ψ4γ̃ij ð10Þ

for

ψ ¼ eð4τþη−σÞ=12 and q¼ 2

3
ð2τ−ηþσÞ; ð11Þ

where ψ is the conformal factor and γ̃ij is the conformal
spatial metric with its determinant detðγ̃ijÞ ¼ detðfijÞ same
as the flat background metric fij. In the above expressions,
τ, ϖ, σ, and η are all functions of r and θ only since we
consider axisymmetric NSs. For nonspinning NSs, we have
eη−σ ¼ e2τ, and thus the metric γij ¼ e2τfij is conformally
flat, while the metric will be distorted from the conformal
flatness due to the dragging effect when the star is rotating.
The determinant of γij in the Cartesian coordinates is
γ ≔ detðγijÞ ¼ e4τþη−σ , which again reduces to γ ¼ e6τ for
nonrotating configurations. For the considered gauge and
coordinate, the extrinsic curvature tensor, defined as

2αKij ¼ Diβj þDjβi; ð12Þ

has the form (see, e.g., Eqs. (2.43) and (2.44) of [60])

Kij ¼
−eηr2 sin2 θ

2α

0
B@

0 0 ∂

∂rϖ

· 0 ∂

∂θ ϖ

· · 0

1
CA; ð13Þ

where “·”s are the ellipsis of the symmetric part and Di
is the covariant derivative associated with the spatial
metric γij.
For the matter profile, the 4-velocity of matter is

expressed as

ua ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − γϕϕϖ

2
q ð1; 0; 0;ΩÞ; ð14Þ

with w ≔ ð1 − v2Þ−1=2 being the Lorentz factor and v the
proper velocity, given by

v ¼ ðΩ −ϖÞr sin θ: ð15Þ

The spin of the star,

Ωðr; θÞ ¼ uϕ

ut
; ð16Þ
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is specified by a certain rotation law as well as the stellar
structure. We note that Ω is the same in both the Einstein
and Jordan frames, thus not further complicating the
transition of the quantities in the two codes.
In the present article, we adopt the 4-parameter differ-

ential rotation law introduced by Uryu et al. [61–63],

Ω ¼ Ωc

1þ ð F
B2Ωc

Þp
1þ ð F

A2Ωc
Þpþq ; ð17Þ

whereF ¼ utuϕ is the redshifted angularmomentumper unit
rest mass. This rotation law allows for the maximum of the
angular velocity to be away from the center, which is a
common characteristic seen in remnants in merger simu-
lations, e.g., [64–66]. Here, two constants have been fixed to
p ¼ 1 andq ¼ 3 [62,63,67]. This choice allowsone toderive
an analytical expression for the first integral of the hydro-
stationary equilibrium, which is required for the RNS code.
The other two parameters, A and B, are not given explicitly.
Instead, the ratios λ1 ¼ Ωmax=Ωc and λ2 ¼ Ωe=Ωc,whereΩe
is the angular velocity at the equator, Ωc is the angular
velocity at the center andΩmax is themaximumof the angular
velocity, are given. From them, one can obtain and solve an
algebraic system for A and B. Those ratios control the shape
of the neutron star. In the present article we use ðλ1; λ2Þ ¼
ð1.5; 0.5Þwhich correspond to the quasitoroidalmodels [34].
When the rotation law F is given, the angular momentum of
the star is determined via

J ¼
Z
r<R⋆

αρhF
ffiffiffi
γ

p
d3x; ð18Þ

for a given rest-mass density ρ and specific enthalpy h
distributions inside the star.

B. Evolution equations

The modified evolution equations in DEF theory under
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
[13,68,69] in the Cartesian coordinates are written as

ð∂t − βk∂kÞW ¼ 1

3
WðαK − ∂kβ

kÞ; ð19aÞ

ð∂t − βk∂kÞγ̃ij ¼ −2αÃij

þ γ̃ik∂jβ
k þ γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k; ð19bÞ

ð∂t−βk∂kÞÃij ¼W2½αRij−DiDjα−8παϕ−1Sij�TF
þαðKÃij−2ÃikÃj

kÞþ Ãkj∂iβ
kþ Ãki∂jβ

k

−
2

3
Ãij∂kβ

kþαÃijφΦ

−αW2½ωφ2DiφDjφþϕ−1DiDjϕ�TF;
ð19cÞ

ð∂t−βk∂kÞK¼ 4παϕ−1ðSiiþρhÞþαKijKij−DiDiα

þαωφ2Φ2−
�
3

2
þ 1

B

�
αm2

ϕφ
2ϕ

þαϕ−1
�
DiDiϕ−KΦϕφ

−3πφ2BTþ 3

2φ2ϕ
ðΦ2ϕ2φ2−DkϕDkϕÞ

�
;

ð19dÞ

ð∂t − βk∂kÞΓ̃i ¼ 2α

�
Γ̃i
jkÃ

jk −
2

3
γ̃ij∂jK −

3

W
Ãij

∂jW

�

− 2Ãij
∂jα − 2αγ̃ij

�
8πϕ−1Jj − φKj

kDkφ

þ
�
1þ 2

B
−
φ2

2

�
ΦDjφþ φDjΦ

�

þ γ̃jk∂j∂kβ
i þ 1

3
γ̃ij∂j∂kβ

k

− γ̃klΓ̃j
kl∂jβ

i þ 2

3
γ̃jkΓ̃i

jk∂lβ
l; ð19eÞ

ð∂t − βk∂kÞφ ¼ −αΦ; ð19fÞ

ð∂t−βk∂kÞΦ¼−αDiDiφ− ðDiαÞDiφ−αφð∇aφÞ∇aφ

þαKΦþ2παϕ−1BTφþαm2
ϕφϕ; ð19gÞ

where W ≔ ψ−2, Φ ≔ −na∇aφ is the “momentum” of the
scalar field with the timelike unit normal vector
na ¼ ð1=α;−βi=αÞ, Γ̃i

jk is the Christoffel symbol associated
with γ̃ij, Γ̃i ≔ −∂jγ̃ij, ðSijÞTF ≔ Sij − γijSkk=3 denotes the
trace-free part of the stress tensor Sij,K ≔ Ki

i is the trace of
the extrinsic curvature, Ãij ≔ W2ðKijÞTF is the conformal
traceless part ofKij,Rij is the spatialRicci tensor,T ≔ Ta

a is
the trace of the stress-energy tensor, and Sij ≔ γaiγ

b
jTab,

ρh ≔ nanbTab and Ji ≔ −γainbTab are the spacetime
decompositions of the stress-energy tensor.
We adopted the moving puncture gauge [70–72] for the

lapse function and shift vector as

ð∂t − βj∂jÞα ¼ −2αK; ð20aÞ

ð∂t − βj∂jÞβi ¼
3

4
Bi; ð20bÞ

ð∂t − βj∂jÞBi ¼ ð∂t − βj∂jÞΓ̃i − ηBBi; ð20cÞ

where Bi is an auxiliary variable and ηB is a parameter
typically set to be ≈ 1=MG.
The cartoonmethod [73] has proven to be a robust scheme

to evolve axisymmetric spacetime [74–77].We extended the
2D cartoon code SACRA-2D developed in [78] to include
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the evolution equations of DEF theory with Z4c constraint
propagation [79,80]. SACRA-2D employs a fixed mesh
refinement with 2∶1 refinement and imposes equatorial
mirror symmetry on the z ¼ 0 plane. For the simulations
included in this paper, the differentially rotating NS is

covered by 9 refinement levels with at least 150 grid points
covering the equatorial radius of the NS. We adopted 6th
order finite difference for the field equations and HLLC
Riemann solver [81–83] for hydrodynamics.

III. NUMERICAL RESULTS

We construct axis-symmetric, spinning NSs obeying the
rotational law (17) for several fixed values of J that will be
used as initial data for the nonlinear evolution code. The
representative sequences are summarized in Table I, where
we consider the massless DEF theory and a massive scalar
field theory with mϕ ¼ 0.01 (≃1.33 × 10−12 eV). We fix
B ¼ 12 and focus on MPA1 EOS [84] as a representative
example. We perform axis-symmetric relativistic simula-
tions for selected models from these sequences, especially
close to the maximummass point, where possible. The goal
is to examine the stability and study the outcome of
unstable models. We start with the massless theory
(Sec. III A) followed by a study of the massive scalar field
case (Sec. III B).

TABLE I. Parameters of different sequences considered in this
paper, where the scalar properties (second column), the angular
momentum fixed for each sequence (third column), and the
central energy density of the NS at the onset of asymmetric
instability (last column) are collated.

Sequence name (mϕ; B) JðM2
⊙Þ ϵthre½×1015 cgs�

m0_B12_J8 (0, 12) 8 1.16
m0_B12_J12 (0, 12) 12 1.12
m0_B12_J20 (0, 12) 20 1.056
m0_B12_J40 (0, 12) 40 NA

m0.01_B12_J8 (0.01, 12) 8 1.15
m0.01_B12_J12 (0.01, 12) 12 1.08
m0.01_B12_J20 (0.01, 12) 20 NA
m0.01_B12_J30 (0.01, 12) 30 NA

FIG. 1. Dynamical stability of sequences (a) m0_B12_J8 (b) m0_B12_J12 (c) m0_B12_J20 (d) m0_B12_J40. The blue circles
and red crosses indicate the regions where the star is dynamically stable and unstable respectively.

AXISYMMETRIC STABILITY OF NEUTRON STARS AS … PHYS. REV. D 111, 104030 (2025)

104030-5



A. Massless scalar field case

For the massless cases, a turning point can be found for
three of the considered angular momenta in Table I, while
the sequence with J ¼ 40 has no turning point, i.e. no
maximum of the mass was reached. A general behavior of
the solutions generated by the RNS code is that with the
increase of the angular momentum, the solution branches
get shorter, and they get terminated before reaching the
turning point. The reason is numerical—the RNS code
cannot converge to a unique solution. Different numerical
schemes may be useful to overcome this problem, such as
the spectral method used in [85,86], that is out of the scope
of the present paper.
Along each sequence, we study the (asymmetric) stability

of 10–20 models, most of which condense near the maxi-
mum mass point. The results are summarized in Fig. 1,
where we see that for cases (a), (b), and (c) the marginally
stable model is slightly left to the maximum of the mass,
implying that the turning-point criterion approximately
predicts the onset of instability for these sequences. For
case (d), where no turning point was reached in the
equilibrium sequence, all neutron star models are stable.
For the stable models, the perturbations in the maximum
density and central scalar field damp in a dynamical time-
scale, then settle back to the initial values. Taking the model
ϵc ¼ 8.5 × 1014 g=cm3 in sequence m0_B12_J20 as an
example, which is very close to the turning-point along the
sequence of J ¼ 20, the evolution of the maximum rest-
mass density and the central value of the scalar field are
shown Fig. 2 (red), where we see that the initial noise is
dissipated after < 5 ms. On the other hand, the unstable
models will collapse into a black hole in a dynamical
timescale. For one such example m0_B12_J12, the evo-
lution of the maximal rest-mass density shows a runaway
growth in less than 3ms (red in Fig. 3).After the formation of

a black hole, the scalar field dissipates exponentially
to < 10−4 since black holes in this theory obey the no-hair
theorem and thus cannot possess a stationary scalar
field [87,88].
In addition, the rotational law is well-maintained over

several dynamical timescales in our simulations for stable
models. For one stable example, we plot the profiles of rest-
mass density, scalar field, and the specific angular momen-
tum,

j ≔ huϕ; ð21Þ

at the initial moment and at 15 ms in Fig. 4. Apart from a
tiny amount of matter that escapes from the surface, the
structure of rest-mass density and scalar field remain
unaltered to a large extent, i.e., the model is rather stable
to axisymmetric perturbations, and the numerical accuracy
is robust. In particular, the profile of specific angular
momentum within the HMNS is well preserved after
15 ms, showing that the rotational profile is also stable
under such perturbations. We also note that the onset of
instability is not sensitive to the employed resolutions.

B. Massive case

We also examine the criterion along fixed-J sequences
for a massive scalar field with mϕ ¼ 0.01ð≃1.33×
10−12 eVÞ. This value is chosen in order to be in agreement
with binary neutron star merger observations [23]. It is a
rather large value, and it effectively confines the scalar field
in a radius several times larger with respect to the neutron
star size.

FIG. 2. Evolution of maximum density ρmax (top) and central
scalar field φc (bottom) for two stable models with an initial
central energy density ϵc ¼ 8.5 × 1014 g=cm3.

FIG. 3. Evolution of maximum density ρmax (top) and absolute
value of scalar field jφj extracted at r ¼ 67.7 km (bottom) for
unstable models with initial central energy density ϵc ¼ 1.15 ×
1015 g=cm3 (red) and ϵc ¼ 1.10 × 1015 g=cm3 (green). The
colored dashed lines represent the formation time of an apparent
horizon for the corresponding models.
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FIG. 4. Snapshots for a stable model in m0_B12_J20, whose central energy density is ϵc ¼ 1.052 × 1015 g=cm3. The initial profiles
are shown in the left column, including rest-mass density (top), scalar field (middle), and specific angular momentum in the code unit
(bottom). The profiles at 15.2 ms for them are shown in the right column respectively.
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The chosen models are presented in Fig. 5. No turning
point is found for the sequences with J ¼ 20 and 30 due to
the same reason explained above, and the models are stable
against axisymmetric perturbations. For the sequences with
J ¼ 8 and 12, a turning point exists and we find that the
onset of instability is in the close vicinity of the turning
point, i.e., the turning point criterion approximately holds.
In the massive theory, we also demonstrate that unstable
models will collapse into a black hole within a dynamical
timescale. As a representative example, we plot the
evolution of the maximum rest-mass density as well as
the scalar field extracted at a certain distance inside the star
for model ϵc ¼ 1.10 × 1015 g=cm3 in m0.01_B12_J12
(green curves in Fig. 3). We again observe a runaway
growth in ρmax and a strong suppression in the scalar profile
after the black hole forms. Following the collapse, the
scalar field decays to a magnitude of ∼10−3 over the
dynamical timescale. The decay rate is much slower than
the massless case at late times, as shown in the bottom
panel of Fig. 3, and can be attributed to the dispersion
relation of scalar waves [89–93]. In particular, the propa-
gation group speed of waves at the frequency ωϕ is given as
[Eq. (27) in [23] ]

vg ¼ ð1þm2
ϕƛ

2Þ−1=2; ð22Þ

where ƛ denotes the wavelength. It can thus be seen that the
scalar waves with wavelengths ƛ≳ 1=mϕ (i.e., ωϕ < mϕ)
will dissipate over a prolonged damping timescale.
To further assess the turning point criteria, we extract the

spectrum of axisymmetric oscillations in the frequency
band ≤ 2 kHz for the sequence m0.01_B12_J8 before
the turning point as shown in Fig. 6. The modes are
extracted by performing Fourier analysis on the central rest-
mass density ρc and the central scalar field φc marked as
circles and crosses, respectively, in Fig. 6. We observe that
two classes of modes emerge in the spectrum, which is
speculated to be the quasiradial m ¼ 0 fundamental mode
(blue) and ϕ-mode (red). We found that the frequency
of ϕ-mode decreases as the central internal energy ϵc
approaches the turning point and eventually reaches a value
very close to the Yukawa cutoff frequency of the scalar field
fc ≔ ωϕ=ð2πÞ in the stable model closest to the turning
point. This suggests that the dynamical instability near the
turning point arises from the ϕ-mode reaching the cutoff
frequency, whereas, in GR, it is triggered by the fundamental

FIG. 5. Dynamical stability of sequences (a) m0.01_B12_J8 (b) m0.01_B12_J12 (c) m0.01_B12_J20 (d) m0.01_B12_J40.
The blue circles and red crosses indicate the regions where the star is dynamically stable and unstable, respectively.
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mode hitting zero frequency (e.g., [94]). This is similar to the
mode analysis in the static case [95–97].

IV. DISCUSSION

By performing fully relativistic 2D simulations, we
examine the well-known turning-point criterion dictating
the condition for one kind of instability among many
others. This criterion has been rigorously proven for rigidly
rotating configurations by Friedman et al. [46] in pure GR,
while the extension of it to more general configurations
seems only plausible by the use of numerical simulations.
In this work, we evolve scalarized neutron stars along
constant-angular-momentum sequences to pin down the
onset of an axis-symmetric instability for various values of
the theory parameters as well as J (Table I). Our results

suggest that the criterion for rigidly rotating bodies in GR
[i.e., Eq. (3)] is largely valid also for differentially rotating
stars in the DEF theory, and the observed onset of
instability agrees within the numerical error at the turning
point along the constant–J sequences (Fig. 1 and 5). For a
representative stable model with J ¼ 20, we see that the
density and scalar profiles as well as the rotational law are
perfectly preserved when we terminate the simulation at
≳15 ms (Fig. 4). A word of caution is appropriate here.
Other instabilities, such as one-arm and bar-mode insta-
bilities [59], can be activated in reality as 3D simulations
suggest [98,99]. Here, the results are limited to axisym-
metric (in)stability that is cared of in the turning-point
criterion.
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[17] F. M. Ramazanoǧlu and F. Pretorius, Spontaneous scalari-
zation with massive fields, Phys. Rev. D 93, 064005 (2016).

[18] S. S. Yazadjiev, D. D. Doneva, and D. Popchev, Slowly
rotating neutron stars in scalar-tensor theories with a
massive scalar field, Phys. Rev. D 93, 084038 (2016).

[19] B. P. Abbott et al., Tests of general relativity with
GW170817, Phys. Rev. Lett. 123, 011102 (2019).

[20] B. P. Abbott et al., Properties of the binary neutron star
merger GW170817, Phys. Rev. X 9, 011001 (2019).

[21] J. Zhao, L. Shao, Z. Cao, and B.-Q. Ma, Reduced-order
surrogate models for scalar-tensor gravity in the strong field
regime and applications to binary pulsars and GW170817,
Phys. Rev. D 100, 064034 (2019).

[22] A. K. Mehta, A. Buonanno, R. Cotesta, A. Ghosh, N.
Sennett, and J. Steinhoff, Tests of general relativity with
gravitational-wave observations using a flexible theory-
independent method, Phys. Rev. D 107, 044020 (2023).

[23] H.-J. Kuan, K. Van Aelst, A. T.-L. Lam, and M. Shibata,
Binary neutron star mergers in massive scalar-tensor theory:
Quasiequilibrium states and dynamical enhancement of the
scalarization, Phys. Rev. D 108, 064057 (2023).

[24] Y. Xie, A. K.-W. Chung, T. P. Sotiriou, and N. Yunes,
Bayesian search of massive scalar fields from LIGO-
Virgo-KAGRA binaries, arXiv:2410.14801.

[25] A. L. Watts, N. Andersson, D. Chakrabarty, M. Feroci, K.
Hebeler, G. Israel, F. K. Lamb, M. C. Miller, S. Morsink, F.
Özel, A. Patruno, J. Poutanen, D. Psaltis, A. Schwenk,
A.W. Steiner, L. Stella, L. Tolos, and M. van der Klis,
Colloquium: Measuring the neutron star equation of state
using x-ray timing, Rev. Mod. Phys. 88, 021001 (2016).

[26] H. Sotani, Pulse profiles from a pulsar in scalar-tensor
gravity, Phys. Rev. D 96, 104010 (2017).

[27] H. O. Silva and N. Yunes, Neutron star pulse profiles in
scalar-tensor theories of gravity, Phys. Rev. D 99, 044034
(2019).

[28] H. O. Silva and N. Yunes, Neutron star pulse profile
observations as extreme gravity probes, Classical Quantum
Gravity 36, 17LT01 (2019).

[29] Z. Hu, Y. Gao, R. Xu, and L. Shao, Scalarized neutron stars
in massive scalar-tensor gravity: X-ray pulsars and tidal
deformability, Phys. Rev. D 104, 104014 (2021).

[30] S. Tuna, K. I. Ünlütürk, and F. M. Ramazanoǧlu, Con-
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