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Tidal resonances in the final seconds of a binary neutron-star inspiral can excite oscillation modes in one
or both of the constituents to large amplitudes. Under favorable circumstances, resonant pulsations can
overstrain the stellar crust and unleash a torrent of magnetoelastic energy that manifests as a gamma-ray
“precursor flare.” We show that for realistic, stratified stars rotating with a spin frequency of ≳30 Hz,
the fundamental g mode or its first overtone can also execute a differential rotation in the crust such that a
magnetic field of strength ≳1013 G is generated via magnetorotational instabilities. This may help to
explain observed precursor rates and their luminosities. Premerger magnetic growth would also provide
seed magnetic energy for the postmerger remnant.
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I. INTRODUCTION

It is by now beyond doubt that most, if not all, short
gamma-ray bursts (SGRBs) are sourced by binary mergers
involving at least one neutron star [1,2]. In rare cases (≲5%
of events [3]), SGRBs are preceded by “precursor” flares
up to even ∼10 s prior to the main event [3–6]. Given such
a delay, these precursors must be somehow launched prior
to coalescence.
One model that can successfully explain the observa-

tional properties of precursors, such as their onset times
relative to the respective main events, involves the resonant
excitation of oscillation modes [7–9]. When the orbital
frequency inevitably rises to some multiple of the fre-
quency of a natural mode in an inspiraling star, an amount
of tidal energy, depending on the “overlap integral” [10,11],
is rapidly siphoned off. For some modes, the resonant
amplitude is large enough that the crust becomes over-
strained, releasing magnetoelastic energy that fuels a
gamma-ray flash. Precursors thus offer a powerful probe
of neutron star structure, since the mode spectrum depends
on the equation of state (EOS) [12], magnetic geometry
[13], rotation rate [14], nuclear symmetry energy [15], and
other microphysical parameters [16,17].
A potential drawback of the model is that it requires

strong magnetic fields, B, to explain the observed energies:
the maximum magnetically extractable luminosity from the
crust of a star with radius R is given by [7,8]

Lprec ∼ 1047
�
v
c

��
Bcrust

1013 G

�
2
�

R
10 km

�
2

erg s−1; ð1Þ

where v is the speed of the mode perturbation. Reconciling
Eq. (1) with observed luminosities (which sometimes
reach ∼1050 erg=s [18,19]) is difficult given that the
characteristic inspiral time far exceeds the expected decay
timescale(s) in a crust with B ≥ 1013 G [20,21]. If we
accept the mode-resonance picture, this poses an astro-
physical puzzle: how could ≲5% of GRB-producing
mergers contain a star with a magnetarlike field?
Tidal resonances also deposit angular momentum into

the stellar interior [11], with the pattern for the resulting
angular velocity, Ω, being tied to the mode eigenfunction.
As such, one anticipates differentially rotating cavities. In
this paper, we show that resonant g modes in realistic,
stratified neutron star crusts result in radial angular velocity
gradients that are negative, ∂rΩ < 0, over the course of a
half mode period. The crust in one or both stars, some
seconds prior to merger when a resonance triggers, thus
becomes primed for dynamo activity, most notably the
magnetorotational instability (MRI) [22–24].
The MRI and related instabilities (e.g. Tayler-Spruit

dynamo [25–28]) play an important role in astrophysical
systems where differential rotation and “weak” magnetic
fields coexist. The most well-studied example is that of
accretion disks: the swirling weak fields cause a linear
instability that brings about turbulence such that the
viscosity can effectively mediate angular momentum
exchanges between fluid elements [24,29]. The MRI
may also be partially responsible for magnetic growth in
protomagnetars [30–32] and the solar cycles [22,33]. In the*arthur.suvorov@tat.uni-tuebingen.de
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case put forward here for resonance-induced differential
rotation, the MRI growth rate is much faster than the
mode oscillation period if the star spins at a (preresonance)
rate of ν0 ≫ 10 Hz, and thus the magnetic field can
rocket to a saturation value BMRI. We estimate BMRI ≳ 3 ×
1013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν0=30 Hz

p
G for low-order g modes which, in

principle, allows Eq. (1) to match observed luminosities,
alleviating the aforementioned tension between decay and
inspiral timescales.

II. RESONANT g MODES

Microphysical composition or temperature gradients
within a fluid allow for buoyancy-restored oscillations
(g modes). The characteristic (Brunt-Väisälä) frequencies
of these modes, N, depend on the properties of the star
through the bulk EOS and the relative “adiabatic” index
of perturbative motions. Following Refs. [14,16,34], we
consider the resonant excitation of g modes in the slow
reaction limit [35] in a stratified star where the spectrum is
encoded through a parameter δ > 0 (convective stability),
defined such that Γ ¼ γð1þ δÞ for perturbation, Γ, and
background, γ ¼ ðdp=dϵÞðϵþ pÞ=ϵ, adiabatic exponents.
Here p and ϵ denote the pressure and energy density,
respectively, determined via the Tolman-Oppenheimer-
Volkoff (TOV) equations over a static background for a
specified EOS.
A given gmode, with eigenfunction nξlm, is described by

three quantum numbers: the overtone number, n, and
spherical-harmonic indices l and m. The inertial-frame
frequency of such a mode is1

nflm;i ¼ nflm −mð1 − nClÞν0 − nFlm; ð2Þ

for C ≈ 0.1 [16,36], which are EOS-dependent numbers
representing leading-order rotational corrections to the
static value nflm. The F terms account for Lorentz and
tidal forces, ignored here as they are small unless the binary
is very eccentric or B≳ 1015 G [16].
We perform a series of computations using a

Hamiltonian evolution scheme at 2.5 Post-Newtonian order
(i.e. including radiation reaction) to evolve the mode
amplitude, ξampðtÞ, and binary inspiral simultaneously;
see Ref. [16] for numerical details. While the indices γ
and Γ controlling the g spectra are generally space
dependent and time dependent, taking a constant approxi-
mation for δ on any given time slice provides accurate
spectra to within ∼5% [12,14]. Tidal heating can raise the
temperature-dependent stratification (δ ∝ T2) by a factor

≳4 by ∼0.5 s prior to merger relative to a “canonical” value
of δ ¼ 0.005, anticipated from entropy gradients in a
mature star [11,37]. Note, however, that much larger values
have been considered in the literature (e.g. [35]). It is useful
to remark therefore that the frequency and amplitude scale
as nflm ∝

ffiffiffi
δ

p
and ξamp;max ∝ δ7=12.

Table I shows a variety of mode frequencies and resonant
amplitudes for the Akmal et al. [38] (APR4) EOS coupled to
a Douchin and Haensel [39] (DH) crust, adopted throughout
this work as it passes constraints set by GW170817 [40] and
can support masses consistent with the heaviest (confirmed)
neutron star, PSR J0952-0607 (MTOV ≳ 2.1M⊙) [41]. More
precisely, a piecewise-polytropic approximation of the com-
bined EOS is used (see Appendix A of Ref. [42]). While this
leads to discontinuities in γðrÞ, it greatly simplifies the
combined inspiral and mode-excitation evolution and yields
quantitatively similar results [14,16,43].

A. Mode-induced differential rotation

From the evolution scheme detailed above, we can
extract the angular velocity imparted to the fluid interior.
The 4-velocity of a perturbation, δuμ, associated with a
single mode is related to that mode’s eigenfunction through

∂tðnξlmÞμ ¼ δuμ=ut; ð3Þ

yielding the perturbed angular velocity, viz. δΩ ¼ δuϕ=ut

assuming that the frame-dragging effect of orbital motion
is negligible. Figure 1 shows the (radial) profile Ω ¼
Ω0 þ δΩ at resonance in the crust for 1g22 and 2g22 modes,
with amplitudes given in Table I, in a 1.6M⊙ star rotating
with Ω0 ¼ 200 rad=s. Note that, postresonance, the mode
amplitude remains approximately constant over a time-
scale of ≲seconds, which should be much longer than that
of magnetic amplification (see below). In the case of 2g22
modes, the relative angular velocities between the base
and top of the crust (the Rossby number) reaches
ΔΩ=Ω0 ∼ 0.05. While ΔΩ=Ω0 is lower for 1g22 modes
by a factor ∼5, the shear rate is still large enough that it
could instigate amplification, as we now describe.

TABLE I. Frequencies and maximum amplitudes achieved by
tidally forced 1g22 (2g22) modes in equal-mass binaries, with a
stratification index of δ ¼ 0.005, for a variety of stellar masses
(M) and radii (R) under the APR4þ DH EOS.

M (M⊙) R (km) Frequency (Hz)
Maximum amplitude

(×10−4)

1.20 11.34 88.46 (59.14) 2.80 (17.06)
1.40 11.32 90.79 (60.61) 5.69 (12.56)
1.60 11.26 93.59 (62.32) 7.81 (10.00)
1.80 11.13 97.25 (66.48) 9.13 (7.45)
2.00 10.87 102.89 (67.84) 10.39 (5.46)

1While the tidal potential couples most strongly to l ¼ m ¼ 2
modes in spin-orbit aligned binaries [10], misalignment can lead
to sizeable excitations of m ¼ 1 modes [14]. We ignore this
possibility and concentrate on l ¼ m ¼ 2 here. We also ignore
the OðΩ2Þ centrifugal corrections to the eigenfunction itself.
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III. MAGNETOROTATIONAL INSTABILITIES

Magnetized fluids in a cavity where the angular velocity
gradient is sufficiently negative are subject to the MRI,
as in the classical example of Keplerian disks [23]. The
linear growth of the instability, culminating in turbulence, is
eventually quenched when either the gradient is erased or
magnetic tension can restabilize the system, with the latter
implying an episode of rapid magnetic growth. In this
study, the cavity in question is a neutron star crust, and the
source of shear is a tidally resonant g mode shortly before
coalescence (Fig. 1). In the simplest case of ideal mag-
netohydrodynamics (MHD), MRI activation only requires
∂rΩ < 0. In a realistic, stratified medium however, the
threshold depends on the microphysical properties of the
matter via the Brunt-Väisälä frequency and the magnetic, η,
and chemical, κμ, diffusivities through ∂Ω2=∂ log r <
−N2η=κμ [22,24]. In protomagnetars with ≳MeV temper-
atures or in the radiative interiors of sunlike stars, this
criterion is easily satisfied because κμ exceeds η by
enormous factors of up to ∼1014 [30,44]. For a mature
neutron star participating in a merger, the situation is less
clear and depends on formation history.
Ionic transport simulations can be used to estimate κμ in

a mature crust, treated as a strongly coupled Coulomb
plasma with Γ ¼ Z2e2=aT ≫ 1 for ion, Z, and elementary,
e, charges, and ion sphere radius a. For an accreted crust
composed of lighter elements with Γ≳ 200 (meltdown
occurs at Γ ≈ 175 [45]), we can infer from Fig. 2 in
Ref. [46] that 10−5 ≲ κμ=ωpa2 ≲ 1 depending on the
assumed metallicity, where ωp is the plasmon frequency.
We thus anticipate 10−8 ≲ κμ ≲ 10−3 in CGS units near the
base of the crust, increasing weakly as the density drops
since ωp ∝ ρ1=2 but a ∝ ρ−1=3 for mass density ρ. For a
cold, catalyzed crust, diffusion is more easily suppressed,
and κμ takes smaller values [47].

On the other hand, from Fig. 1 and standard estimates for
the electrical conductivity near ρ ≈ 1014 g cm−3 [48], we
have N2η=rj∂rΩ2j ∼ 10−7 × ðN=103 HzÞ2ð10−3=ξampÞ2 ×
ðT=107 KÞζ cm2=s with ζ ≈ 2. We therefore expect κμ ≫
N2η=rj∂rΩ2j and the MRI to proceed unfettered in a
number of astrophysical cases, at least near the crust-core
interface where the Brunt-Väisälä frequency is not too
large, especially for recycled pulsars with accreted crusts or
at lower temperatures in cases where κμ falls off slower than
η (cf. Refs. [48,49]). Independently, Fuentes et al. [50]
estimated the Schmidt number—the ratio of the kinematic
viscosity ν to the diffusivity—to be of order unity in the
crust. This implies a more optimistic scenario for MRI
activation, as ν≳ 1 cm2 s−1 for T ≲ 107 K, though again
depending on composition. Such a value for ν also implies
that the dissipative viscous timescale [51],

1

τvis
∼ −

1

2E
dE
dt

∼ ν
f2

v2
; ð4Þ

for mode energy E, is very long compared to the final
∼ seconds of inspiral.

A. Magnetic amplification

It can be shown that vertical, Alfvén-like modes arising
from the linearized induction equation with δB ∝ eiðk·xÞ−iωt

in a (electron) fluid where κμ ≫ N2η=rj∂rΩ2j have eigen-
values2

0 ¼ ω4 − ω2
�
2ðk · vAÞ2 þ κ2

�
þ ðk · vAÞ2

�ðk · vAÞ2 þ κ2 − 4Ω2
�
; ð5Þ

for Alfvén velocity vA ¼ B=
ffiffiffiffiffiffiffiffi
4πρ

p
and epicyclic frequency

κ2 ¼ r−3∂rðr4Ω2Þ. In this limit, eigenvalues with a negative
imaginary component exist if ∂rΩ < 0, implying exponen-
tially growing magnetic modes. Equation (5) shows that the
growth rate, tMRI, and wavelength, λMRI ¼ 2π=jkj, of the
fastest growing mode satisfy

tMRI ∼
1

Ω0

;
4πB2

λ2MRIρ
¼ −

�
1þ κ2

4Ω2

�
∂Ω2

∂ log r
; ð6Þ

respectively [24,55]. Although expressions (6) are local,
it has been argued that the MRI will be globally suppressed
in a cavity of extent R̃ if λMRI ≳ R̃ (e.g. [55]), since then
the unstable modes will not “fit inside” the cavity. This
criterion has been found to match reasonably well to in situ
MHD simulations where the cavity is some fraction of the
equatorial radius of the star [31]. We apply this simple

FIG. 1. Snapshots of the crustal angular velocities, ΩðrÞ, for
1g22 (black, solid) and 2g22 (blue, dashed) modes, at the time slice
corresponding to the maximum amplitude (Table I), for a star
with ν0 ¼ 100=πHz, M ¼ 1.6M⊙, and R ¼ 11.26 km.

2Relativistic corrections to this formula have been considered
in Refs. [52,53], though the adjustments are small for low rotation
rates unless the star is very compact. We also ignore superfluidity
and superconductivity, which could be more important [54].
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criterion to the crust; full-scale numerical simulations will
be conducted in future work. The instability condition
λMRIðrÞ≲ 0.1R translates into3

BMRI ≲ R
ffiffiffi
ρ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r∂rΩð4Ωþ r∂rΩÞ

p
20

ffiffiffi
π

p : ð7Þ

Equation (7) could change by a factor of a few depending
on the exact nature of the MRI, and is strongly sensitive
to the eigenfunction through Eq. (3). An independent way
of estimating the magnetic amplification via the MRI
is to assume equipartition between the magnetic, Umag ¼
B2=8π, and shear, Ushear ¼ 1

2
ðΔΩ=ΩÞ2ðrΩÞ2ρ, energy den-

sities (see, for instance, the discussion in Ref. [28]).
Figure 2 shows the magnetic fields achieved by 1g22 and

2g22 modes via either the local MHD analysis (7) or
equipartition for the star depicted in Fig. 1. The estimates
agree within a factor of ∼2, suggesting they are relatively
robust. Moreover, the crustal field is large (≲1014 G) in
either case except toward the surface where the density
sharply drops to zero. The jagged features visible in the
MHD profiles at r ≈ 0.94R and ≈0.97R are artifacts of the
jump discontinuities in γðrÞ. For 1g22 modes, integrating
over the radial extent of the crust to estimate the average
field from (7), we find

hBMRIi ≈ 2.1 × 1013
�
ξamp;max

10−3

�
1=2

�
ν0

30 Hz

�
1=2

G; ð8Þ

provided that ξamp ≪ 1. The same scaling applies to 2g22
modes but with a slightly larger prefactor, viz.≈3.4×1013G.
For moderately fast stars and the resonant amplitudes listed

in Table I, amplifications of order (8) are enough to
accommodate the luminosities of precursor flares (1),
especially if ν0 ≫ 30 Hz. For more compact stars, the

1g22 (2g22) induced amplifications become larger (smaller),
and thus a range of field strengths can be anticipated
depending on the binary mass ratio, spin frequency,
stratification, and mode quantum numbers.
Because MRI activity is limited by the mode oscillation,

which reverses the sign of the angular velocity gradient
over a half period, the field may not reach the value (7) if
the star is spinning slowly. From Eqs. (2) and (6), the
condition tMRI ≲ Pmode;i=2 reads (for m ¼ 2) as

ν0 ≳ 20.2

�
nfl2

100 Hz

�
Hz: ð9Þ

In general, we may anticipate a ≳2=π reduction in
amplitude applying to (7) if inequality (9) is only margin-
ally satisfied, with the full amplitude applying in the much-
greater-than limit. (Note that tMRI is only a rough estimate
and could be somewhat longer in reality [56]).
The above form our main result: tidally resonant gmodes

in mature, stratified stars rotating at rates of ≳30 Hz
[Eq. (9)] may potentially result in the amplification of
the magnetic field to magnetarlike levels [Eq. (8)] some
∼seconds before coalescence. This mechanism has inter-
esting implications for GRB phenomena.

IV. OBSERVATIONAL CONNECTIONS

During resonance, the magnetic field grows over a
timescale of tMRI ∼ 5 × ð30 Hz=ν0Þ ms [Eq. (6)]. For the
overlap integrals pertaining to g modes, this is shorter than
the combined time taken for the crust to reach its elastic
limit and subsequently emit a flare [7,14]. A 2g22 mode
could also incite magnetic growth before a 1g22 mode
actually “breaks” the crust. Therefore, MRI-boosted fields
can assist in the launching of a precursor via Alfvén
waves [8,9].
The onset time of a given precursor corresponds to an

orbital frequency (up to a jet-breakout timescale [9]),
allowing one to select from a handful of candidate modes
that could become resonant then [7]. The MRI-induced
field from a resonant mode, such as those shown in Table I,
then leads to a prediction for the precursor luminosity via
Eqs. (1) and (8): the maximum amplitude scales as ξamp ∝
f−5=6i [16], and thus so does Lprec. Since stronger stratifi-
cations increase fi while spin reduces it, a range of lumino-
sities and onset times can be accommodated by gmodes, in
principle. For example, the very bright (∼7 × 1049 erg s−1)
precursor to GRB 211211A was observed ∼1.1� 0.2 s
prior to the main event [18], which matches the resonance-
timing criterion for a 2g22 mode in a M ∼ 1.25M⊙ star [57]
provided that ν0 ≈ 69ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ=0.02
p

− 1Þ Hz (cf. Ref. [34]).
If the star is strongly stratified such that δ ∼ 0.1, the

Ideal MHD ( 1g22)

Ideal MHD ( 2g22)

Equipartition ( 1g22)

Equipartition ( 2g22)

0.90 0.92 0.94 0.96 0.98 1.00
1010

1011

1012

1013

1014

Radius (r/R)

B M
R
I
(G
)

FIG. 2. Magnetic boosting estimates from the local MHD
analysis (7) (solid curves) or from equipartition between the
magnetic and shear energies (dashed curves). The same star from
Fig. 1 is used for both 1g22 (black) and 2g22 (red) modes.

3If the magnetic field strength is larger than the saturation
value (7) prior to resonance the inequality is moot.

SUVOROV, KUAN, REBOUL-SALZE, and KOKKOTAS PHYS. REV. D 109, 103023 (2024)

103023-4



required spin would be consistent with the observed
luminosity (recalling that ξamp ∝ δ7=12), the onset time,
and inequality (9).
Magnetic amplification could explain the event rates of

precursors. If a relatively large spin frequency (9) in a
stratified star is required to facilitate the MRI (assuming
κμ ≫ η), precursor rarity would be tied to the population of
“fast” stars taking part in mergers. Positing some prior
distributions for mass, spin, and stratification, we can
calculate the probability, P, that a binary contains a member
for which inequality (9) is satisfied. Accounting for
beaming, we estimate 0.04≲ P≲ 0.1 depending on spin
variance, which is in good agreement with the observed
precursor rate. We also predict that precursors with Lprec ≥
5 × 1049erg s−1 should be rare (< 1% of events; see
Appendix for details).
Many MHD simulations find that stronger seed fields in

premerging objects result in larger magnetic energies in
magnetar remnants [58–60]. However, the resolution cur-
rently achievable with even state-of-the-art numerical codes
may not be enough to globally capture magnetic field
amplification from a weak seed field in a protomagnetar;
in reality, the seed energy may have little impact [61,62],
especially if localized to the crust [63]. A related debate in
the literature concerns whether protomagnetars are capable
of collimating a jet that can successfully drill through the
polar baryon pollution (see Ref. [64]). In the scenario put
forward here, we anticipate that ≳95% of remnants are
formed with weaker seeds (no MRI) and ≲5% with strong
ones (MRI). In light of this, whether the seed field impacts
on multimessenger signals and remnant structure could
potentially be tested by observations. For example, if more
GRBs with precursors that also go on to display x-ray
afterglow plateaus are well modeled by strong field
(> 1016 G) neutron stars, as for GRBs 080702, 081024
and 100702 [65], then we could infer that the initial seed
affects the merger product in an important way. Possible
outliers are GRBs 090510 and 211211A,4 though their
internal fields could still be ultrastrong [34,66,67]. Future
observations of gravitational waves will help to clarify the
situation [68].

V. DISCUSSION AND CAVEATS

In this paper, we demonstrate that the resonant excitation
of g modes in a binary neutron-star merger induces a
negative angular velocity gradient in the crust over the
course of a half mode period, which in turn can excite the
MRI if the chemical diffusivity and spin [Eq. (9)] are large
enough. This instability leads to rapid growth in the crustal
field [Eq. (7)], possibly resolving the mystery of how

magnetar-level fields [Eq. (1)] seem to be present in
mergers releasing precursor flares.
Aside from g modes, other modes have been invoked in

the literature to explain precursors. The most notable
candidate is the interface mode [7,8], which exists in stars
housing a liquid-to-solid transition at the crust-core (or
crust-ocean [17]) boundary. Interface modes have a rela-
tively weak azimuthal component however (see, e.g., Fig. 4
of Ref. [69]), and thus may not be suitable for introducing
large amplifications because the induced shear is small
[Eq. (3)]. Having B ≥ 1013 G in a premerger flarer may
thus require a different explanation—such as stalled field
decay via the Hall attractor [70]—if i modes are the
igniters. Other candidates are the intrinsically unstable
inertial modes, which also wind up the internal field lines
[71,72] and may be excited to large amplitudes in rapidly
rotating systems [37]. The secondary in GW190817 might
have been rapidly rotating [73], for example, and so r
modes could sometimes play a role.
An important lesson from the literature is that nonlinear

couplings between growing and dormant modes limit satu-
ration amplitudes [74–76]. In the context of large-amplitude
core g modes, Weinberg and Quataert [77] found that
three-mode parametric instabilities reduce the peak energy
of the dominant parent by factors of ∼102. Since E ∝ ξ2amp

and hBMRIi ∝ ξ1=2max, a leeching of this magnitude would
reduce Eq. (8) by a factor ∼3. However, the above applies to
protostars whose g spectra are less dense than that of cold
stars, implying a possible underestimate. Nonlinear cou-
plings will be studied in future work; if such a reduction is
representative though, the model could not accommodate
bright (L≳ 1049erg s−1) precursors unless ν0 ≫ 20 Hz (see
Appendix).A related issue is that viscous friction at the crust-
core interface could limit crustal amplitudes [78].
Although we focus on the MRI, it is not the only

available option for field amplification in a differentially
rotating cavity. Even if strong stratification limits MRI
boosting, the Tayler-Spruit dynamo could occur: initially,
the toroidal field gets amplified by the winding of the radial
field until it becomes unstable to the Tayler instability.
When the Tayler perturbations enter into the nonlinear
regime a poloidal component is generated, effectively
closing the dynamo loop. This mechanism can operate
for either positive or negative shear—unlike the MRI—and
thus could also apply at mode phases where the amplitude
is negative. Descriptions for the saturation strength are
given by Spruit [25] (denoted BS) and Fuller et al. [26]
(BF), who respectively predict

BS ¼ r
ffiffiffiffiffiffiffiffi
4πρ

p
Ω2ðr∂rΩÞ2
N3

; BF ¼ BS
N4=3

ðr∂rΩÞ4=3
; ð10Þ

for the radial component. Tayler-Spruit saturation is a
complicated process though that depends sensitively on
a number of aspects; it is unclear which value applies to a

4The remnant mass for GRB 211211A might have exceeded
∼3M⊙ [57], favoring instead a black hole.
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mature crust (see Ref. [27] for a discussion). For com-
pleteness, we present both estimates (10) in Fig. 3 for the
star from Fig. 1. In the optimistic case of the Fuller et al.
[26] estimate, the amplitude is large enough (∼1013 G) to
be astrophysically relevant since N ≫ r∂rΩ in the crust for
g-mode resonances. However, the dynamo may not have
sufficient time to amplify the field to BS;F before merger if
the initial poloidal field is weak [27].
Numerical simulations are needed to study such issues

more carefully and properly assess whether the MRI or
other mechanisms described here operate in nature. There
are some serious challenges in this direction though in the
context of binary merger simulations. (i) Inspiral must
begin at a time such that the orbital frequency is less than
∼100 Hz to capture resonance of low-n g modes. (ii) The
crust and thermal gradients, augmenting the g spectrum and
determining the activation criterion, must be modeled.
(iii) The tidal response for g modes is rather shallow,
and thus numerical dissipation, which can bias the results,
must be treated with special care. It may be more feasible to
consider local simulations, along the lines of Ref. [32],
where some g pattern (e.g., Fig. 1) is put in ad hoc.
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APPENDIX: STATISTICAL ESTIMATIONS

This material details some statistical calculations regard-
ing MRI activity, including those quoted in the main text.
We suppose that the spins of binary neutron-star mergers
are distributed according to a Gaussian with mean zero,

such that

fνðχeff ; σχÞ ¼
1

σχ
ffiffiffiffiffiffi
2π

p e
−
χ2
eff
2σ2χ ; ðA1Þ

where χeff is the effective dimensionless spin often used in
gravitational-wave studies (e.g. [79]),

χeff ¼
M1χ1 cos θ1 þM2χ2 cos θ2

M1 þM2

; ðA2Þ

for component masses Mi, angles θi made between the
respective spin and orbital angular momentum vectors, and
individual spin magnitudes

χi ¼ 2πcIiνi=GM2
i : ðA3Þ

Here the stellar moments of inertia are represented by Ii,
and c and G denote the speed of light and Newton’s con-
stant, respectively. The probability density function defined
in Eq. (A1) matches well to the low-spin prior often used in
gravitational-wave data analysis for σχ ≈ 0.01, and also to
the “ISO SPIN” model of [79], where a uniform distribu-
tion for cos θ1 was considered, if instead σχ ≈ 0.004 (see
Fig. 1 therein). By treating σχ as a free parameter we can
thus study a range of astrophysically motivated priors.

1. Activation probability

Since the frequencies and resonant amplitudes of g
modes do not scale strongly with the binary mass ratio
q [14], we assume an equal-mass binary (M1 ¼ M2) with
spin-orbit alignment (expected in a typical astrophysical
merger [79]) for simplicity. The observed Galactic binary
neutron-star mass distribution, fM, is also well modeled by
a Gaussian of mean 1.33M⊙ and standard deviation σM ≈
0.11M⊙ [80], which we adopt here. We further assume a
distribution of stratifications, fδ, that runs uniformly from
δmin ¼ 0 to δmax ¼ 0.2, the latter value corresponding to the
largest values considered by [35]. Each star is assumed to
have the same stratification (i.e. EOS and temperature).
With these simplifying but reasonable assumptions, we can
calculate the probability that there will be a member of the
binary such that inequality (8) is satisfied, viz.

P ∝ ε

Z
dν1dν2dMdδfνðχeff ; σχÞfδðδÞfMðMÞ

× 1

�
νi > 20.2

�
1f22

100 Hz

�
kνi > 20.2

�
2f22

100 Hz

��
;

ðA4Þ

normalized by the total value without the conditionals,
where the indicator function 1 restricts the integral to the
appropriate domain. In the above, the factor ε ≤ 1 accounts

BS (2g22)
BS (1g22)

BF (2g22)
BF (1g22)

0.90 0.92 0.94 0.96 0.98 1.00

109

1010

1011

1012

1013

1014

Radius (r/R)

B T
S
(G
)

FIG. 3. Similar to Fig. 2, though instead for the Tayler-Spruit
estimates (10) given in Refs. [25] (S; dashed) and [26] (F; solid).
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for beaming. While precursor flares are expected to be
quasi-isotropic [7], we posit a factor ≲2 reduction due to
beaming based on the l ¼ 2 mode pattern. By building a
high-resolution table of g-mode frequencies and amplitudes
as a function ofM and δ (essentially extending Table I), we
evaluate expression (A4) using a Monte Carlo scheme
(with sampling such that the expected error is ≲2%). We
obtain an empirical fit of the form

P ≈ 0.04 ×

�
ε

0.5

��
σχ

0.005

�
1.9
; ðA5Þ

which matches well with the observed rate of SGRB
precursors. However, varying ratios of κμ=η could also
contribute to the rarity of precursor observations: the MRI
may not activate if δ (i.e. N2) is too large or diffusion
outpaces mode growth. For better or worse, the magnetic
diffusivity η scales strongly with temperature, density, and
the crustal impurity concentration, thereby varying by
many orders of magnitude from star to star depending
on the cooling and accretion history (see Sec. 9.3 in
Ref. [48]). It is therefore difficult to formally estimate
the probability that κμ ≫ N2η=rj∂rΩ2j is satisfied, but
equation (A5) could easily be reduced by a further factor
≳2 depending on the binary formation channel, as dis-
cussed in the main text. The final result may also change by
a factor of order unity had we used a different EOS. It is
thus not difficult to match the ≲5% observation rate
if σχ ≳ 0.01.

2. Magnetic growth

Using Eq. (5), we can go a bit further and also calculate,
assuming the MRI activates, cumulative distribution func-
tions (CDFs) for the magnetic field strengths. Owing to
the complexity of the resulting integrals, we simplify the
calculation by assuming that one component of the binary
is static. More precisely, we compute

FnðzÞ ∝
Z

dνdMdδfνðχ; σχÞfδðδÞfMðMÞ

× 1ðz > BMRIÞ1
�
ν > 20.2

�
nf22

100 Hz

��
: ðA6Þ

The above integral (A6) defines the proportion of MRI-
activating binaries that generate magnetic field strengths
z > B for either n ¼ 1 or n ¼ 2 modes.
The resulting CDFs are shown in Fig. 4 assuming

σχ ¼ 0.01, as appropriate for the low-spin prior. From
these curves we anticipate that most events induce a
saturation magnetic field strength that exceeds 1013 G.
For 2g22 modes, the resonant amplitude exceeds 10−3 in
> 99% of cases (Table I) for the mass prior we have
adopted, and thus a negligible portion of activations result
in fields below 1013 G (dotted line). The tendency for 2g22

modes to induce larger magnetic growths (with some∼10%
exceeding 1014 G) is furthered by the fact that the mode
frequency is generally lower, meaning that greater spins are
implied if the MRI is to activate (which is rarer than for 1g22
modes), and hence larger hBMRIi values are achieved
overall. Had we used a more (less) optimistic spin prior,
the graphs would skew further to the right (left). In a similar
vein, if we capped the stratification index to a smaller value
(or assumed it clustered around a smaller value) and/or
postulated reductions due to nonlinear couplings, the
distribution would skew toward the left. A more thorough
statistical investigation considering these aspects will be
carried out elsewhere.

3. Luminosities

To compare with precursor observations more directly
we can also compute CDFs for the maximum magnetically
extractable luminosity (1). The relevant integral is similar

B
=
1
0
1
3
G

1g22
2g22

5 10 50 100

0.0

0.2

0.4

0.6

0.8

1.0

<BMRI> ( 1012 G)

C
D
F

FIG. 4. CDFs for crustal magnetic field strengths achieved by
the MRI (assuming it activates), for either 1g22 (black, solid) or

2g22 (blue, dashed) modes and σχ ¼ 0.01.

= 0.01

= 0.005

5 10 50 100 500 1000

0.0

0.2

0.4

0.6

0.8

1.0

Lprec ( 1047 erg/s)

C
D
F

FIG. 5. Precursor luminosity CDFs for σχ ¼ 0.01 (black, solid)
and σχ ¼ 0.005 (red, dashed). Magnetic amplification from both

1g22 and 2g22 modes are considered.

MAGNETIC AMPLIFICATION IN PREMERGER NEUTRON STARS … PHYS. REV. D 109, 103023 (2024)

103023-7



to that of (A6), with the argument of the indicator func-
tion replaced by the luminosity in the obvious way. The
results are shown in Fig. 5. Even in the more optimistic
case of σχ ¼ 0.01, we anticipate that very bright (Lprec >
5 × 1049 erg s−1) precursors should be rare, constituting
∼1 in 500 events. More typical luminosities should be
those that cluster around the expected value, Lavg ≈
6 × 1048 erg s−1, which is in broad agreement with pre-
cursor observations. If, however, the precursor-inducing

population had a lower spin variance or Eq. (8) reduces
significantly in the face of nonlinearity, it would be difficult
for MRI boosting to explain events such as GRB 211211A,
whose peak luminosity reached ≈7 × 1049 erg s−1 [18].
For σχ ¼ 0.005 we find in fact that only one in ∼1010

events could reach Lprec > 5 × 1049 erg s−1 (i.e., another
mechanism would be necessary to explain at least this
particular precursor).
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