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Many classes of extended scalar-tensor theories predict that dynamical instabilities can take place at high
energies, leading to the formation of scalarized neutron stars. Depending on the theory parameters, stars in
a scalarized state can form a solution-space branch that shares a lot of similarities with the so-called mass
twins in general relativity appearing for equations of state containing first-order phase transitions. Members
of this scalarized branch have a lower maximum mass and central energy density compared to Einstein
ones. In such cases, a scalarized star could potentially overaccrete beyond the critical mass limit, thus
triggering a gravitational phase transition where the star sheds its scalar hair and migrates over to its
nonscalarized counterpart. Such an event resembles, but is distinct from, a nuclear or thermodynamic phase
transition. We dynamically track a gravitational transition by first constructing hydrostatic, scalarized
equilibria for realistic equations of state, and then allowing additional material to fall onto the stellar
surface. The resulting bursts of monopolar radiation are dispersively stretched to form a quasicontinuous
signal that persists for decades, carrying strains of order ≳10−22 ðkpc=LÞ3=2 Hz−1=2 at frequencies of
≲300 Hz, detectable with the existing interferometer network out to distances of L ≲ 10 kpc, and out to a
few hundred kpc with the inclusion of the Einstein Telescope. Electromagnetic signatures of such events,
involving gamma-ray and neutrino bursts, are also considered.
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Introduction.—General relativity (GR) has historically
provided an excellent description for both local (e.g., Solar
System) and global (e.g., cosmology) gravitational phe-
nomena. It is well known, however, that the theory cannot
by itself be fully complete, and the nonrenormalizability of
the action implies that additional ingredients, possibly in
the form of nonminimally coupled fields [1,2], should
activate at extreme scales. Nevertheless, any theoretical
extension must be virtually invisible at low energies, and
also somehow suppressed in certain strong-field environ-
ments. For example, binary pulsar experiments restrict the
possibility for significant subquadrupolar radiation over
super-Compton length scales [3–7], and gravitational-
wave (GW) experiments suggest that (at least some)
black holes should be approximately, if not exactly,
Kerr [8]. An observationally viable class of extensions
that can survive these issues is massive scalar-tensor theory
(STT): the mass of the scalar field suppresses the scalar
dipole radiation [9,10], and the classical no-hair theorems
tend to be respected [11], implying that astrophysically
stable black holes would be indistinguishable from their
GR counterparts.

Material degrees of freedom in these theories, how-
ever, allow for the possibility of “scalarized” stars [12].
This phenomenon can be generally thought of as a
consequence of the effective curvature-coupled mass term,
which appears in the relevant Klein-Gordon equation,
changing sign once some critical threshold is breached,
thereby inducing a tachyonic instability (also see, though,
Ref. [13]). Thus, for neutron stars a critical compactness
exists at which a branch of strongly scalarized solutions
emerges. In some cases, the heaviest scalarized neutron star
has lower baryon mass and central energy density com-
pared to the maximum mass (stable) nonscalarized neutron
star [14] and there is a gap between the two branches where
no stable neutron star solutions exist. This picture resem-
bles very closely the so-called mass twins in pure GR that
are manifestations of the presence of a first-order phase
transition in the equation of state (EOS) [15–18]. This
implies that if a near-critical scalarized star were to acquire
additional mass through accretion, the system may
promptly discharge its scalar hair. Importantly, the neutron
star does not need to collapse to a black hole in this
scenario, as considered in, e.g., [19–22], but rather may
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undergo a “gravitational” phase transition, distinct from a
“material” (e.g., hadron-quark) phase transition [23], and
migrate to the GR branch pertaining to the same EOS. This
novel scenario is considered in this Letter.
A migration to a new branch is likely to carry a variety of

observational signatures. As a scalar shedding necessarily
compactifies the star over a short, dynamical timescale
(≳ms), abrupt changes in the electromagnetic output of the
source, most notably associated with gamma-ray burst
(GRB) afterglows and neutrino bursts [24–26], would point
toward such a transition. These signatures could, however,
be imitated by a nuclear phase transition [27–32], thus
highlighting the well-known degeneracy between effects
coming from a modification of gravity and the uncertainties
in the nuclear EOS (e.g., [33,34]). One key difference
is that a gravitational transition will unleash a burst of scalar
radiation which, for a massive scalar field theory, will be
dispersively stretched into a quasicontinuous signal, as
higher frequency components are first to arrive at the
detector(s) [21]. GW afterglows lasting up to a ∼kyr may
therefore follow a gravitational phase transition.
Formalism and equations of motion.—The action of a

STT of whichever flavor [e.g., Brans-Dicke, Bergmann-
Wagoner, or even fðRÞ theories] can be transformed into
the Einstein frame

S ¼
Z ffiffiffiffiffiffi−gp

16π
d4xðR − 2∂μφ∂

μφ − 4VÞ þ SM½Ψ; A2gμν� ð1Þ

for matter portion SM, metric tensor g, scalar field φ, Ricci
scalar R. Scalar field potential is taken as VðφÞ ¼ m2

φφ
2=2

[35], whose saddle point poses the boundary condition
φðr → ∞Þ ¼ 0 for φ. The transition to the physical Jordan
frame metric g̃μν is done via a Weyl scaling g̃μν ¼ AðφÞ2gμν,
where we adopt the spherically symmetric Jordan frame
metric, g̃μν ¼ diag½−α2; X2; AðφÞ2r2; AðφÞ2r2 sin2 θ�, and
choose the conformal factor AðφÞ ¼ expðα0φþ β0φ

2=2Þ
following [35,36]. The resulting field equations are given
in the Supplemental Material [37], while we note here
that the term responsible for scalarization is proportional
to the logarithmic derivative of the conformal factor αðφÞ ¼
d lnA=dφ. The choice we make, αðφÞ ¼ α0 þ β0φ, there-
fore corresponds to the two leading terms in the Maclaurin
expansion of any regular function; higher-order terms do not
change the picture of scalarization qualitatively for a large
class of more complicated conformal factors becauseφ ≪ 1
everywhere [12,48,49]. Simulations for another coupling
function are shown in the Supplemental Material [37] to
demonstrate that the phenomenon put forward in this Letter
is not quenched by higher-order effects.
Two additional GW modes beyond those in GR are

raised by φ, viz. the breathing (“B”) and longitude (“l”)
modes, which carry the same response functions up to a
sign flip [see Eq. (134) of [50] ]. The strain of the latter is
weaker by a factor ðλφfÞ−2 relative to the former, which

reads hφ ¼ 2α0φ. The strain felt by a LIGO-Virgo-like
array (two orthogonal antennas), at a distance L from the
source, is thus

hðL; tÞ ¼ hφðL; tÞf1 − ½λφfðL; tÞ�−2g=2 ð2Þ

when the source orients optimally, where λφ ¼ 2πℏ=mφ is
the Compton length scale for the massive scalar field, t is
the retarded time postemission, and fðL; tÞ is the character-
istic frequency of the signal. Furthermore, modes with
distinct frequencies propagate at different, subluminal
velocities, and the full power-spectral density (PSD),
2

ffiffiffi
f

p jh̃ðfÞj, will not arrive at the detector simultane-
ously. As a result, the dispersively stretched burst
becomes quasimonochromatic over a L- andmφ-dependent
timescale [21,35]. Therefore, there is an implicit time
dependence, encoded in f, for the witness. The quasimono-
chromatic feature implies that a phase-coherent search can
be implemented, and the signal-to-noise ratio (SNR),
4
R
df½jh̃ðfÞj2=SnðfÞ�, can be obtained by integrating the

strain over a narrow frequency interval. In the limit
Tf ≫ 1, i.e., when many cycles are observed, the SNR
can be obtained by dividing the “effective” PSD from the
aforementioned time-domain integration [21],

ffiffiffiffiffi
Sf

p ¼
ffiffiffiffi
T

p
α0AðL; tÞf1 − ½λφfðL; tÞ�−2g; ð3Þ

by the noise spectral curve
ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
, where we assume an

optimally oriented detector. Here, the amplitude is AðL; tÞ≃
AðfÞL−3=2λφðf2 − λ−2φ Þ3=4 with AðfÞ the Fourier compo-
nent of the scalar GW extracted at some distance
λφ < rout ≪ L so that it contains the wave content that
eventually propagates to a detector at L [cf. Eq. (57) in [21],
while noting that our definition for A differs from theirs by
a factor of L−1].
Scalarized neutron stars.—In the present Letter, we

adopt a piecewise-polytropic approximation to the APR4
EOS [51], which withstands constraints coming from GW
170817 [52] and supports masses that accommodate the
heaviest neutron star observed to date, viz. PSR J0740þ
6620 ðM ¼ 2.14þ0.10−0.09 M⊙Þ [53]. Specifics related to this
EOS and its numerical implementation are given in the
Supplemental Material [37]. In the considered STT and for
large enough stellar compactness, the neutron star scalar-
izes, meaning it develops a strong, localized scalar field. If
α0 ≠ 0, purely GR solutions do not exist within the theory,
and all stars have at least some tiny residual φ ≠ 0, i.e., they
must be at least weakly scalarized. For practical purposes,
however, weakly scalarized solutions are virtually indis-
tinguishable from GR counterparts at high densities and
thus, with a slight abuse of language, we call these
solutions “descalarized.”
A sequence of neutron star solutions is shown in the top

panel of Fig. 1 as a function of central energy density ϵc for
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α0 ¼ 10−2, β0 ¼ −5, and mφ ¼ 10−14 eV. This value of
mφ mitigates the tension with binary-pulsar constraints,
since radiation is suppressed over super-Compton length
scales r ≫ λφ [4,9,10], and effectively allows for a broad
range of β0 [54]. The other parameters, which similarly
respect binary-pulsar constraints, are chosen such that the
maximal mass for the scalarized branch (2.118 M⊙; red
curve) is less than that of the “weakly scalarized” branch
(2.168 M⊙; blue curve). Moreover, for both the red and the
blue branches the neutron star solutions are stable up to the
maximum mass point and lose stability afterward
[22,55,56], resulting in a picture reminiscent of the so-
called mass twins in pure GR [15–18]. Thus, a phase
transition (descalarization) from the red to the blue branch
can be realized if additional mass is added. For the APR4
EOS, this scenario is possible provided that
−5.41≲ β0 ≲ −4.78, with the exact range depending on
α0 and the coupling functions VðφÞ and AðφÞ. Similar
ranges apply for other EOSs. These limits will differ also if
we consider scalarization in more general theories of
gravity, such as tensor-multiscalar theories [57–59].
Accretion dynamics.—A neutron star that overaccretes

beyond the peak of the scalarized curve, displayed by the
green star in Fig. 1, will undergo a phase transition by
descalarizing. This scenario may occur either for a newborn
star after a merger or collapse through fallback accretion, or
a mature star in a binary undergoing Roche-lobe overflow.
In the former case, debris disks containing ≲0.2 M⊙ worth
of material [25], though potentially much more in a core
collapse [60], will form around the birth site. A sizeable

fraction ð≲ 40%Þ of it may eventually fall back onto the
stellar surface [61]. Accreted masses may total ≲0.8 M⊙ in
some x-ray binaries [62], though such amounts can
accumulate only over long (potentially ∼Gyr) timescales.
The details of the accretion process itself are complicated,
however, since the neutron star may be spinning rapidly
enough that material is repelled by a centrifugal barrier
(“propeller” effect [60]), pressure gradients from nucleo-
synthetic heating can accelerate ejecta before it has a
chance to return [63], and material will not fall isotropically
onto the surface but rather may be guided onto the magnetic
poles by the Lorentz force [64].
In this Letter, however, our main goal is not to simulate a

realistic accretion process in a STT, but rather to illustrate
qualitatively how the dynamical acquisition of additional
mass can trigger a descalarization. To this end, accretion is
artificially simulated by superposing a radial, Gaussian
bulk centred at 0.9 R⋆, for stellar radius R⋆, with a width
(“standard deviation”) of 1 km, every 4 ms. The process is
then halted when a total (baryon) mass of 0.015 M⊙ has
been added (after 16.01 ms). The average accretion rate of
≃ 0.94 M⊙ s−1 is marginally slower than that observed in
the first few ms of merger simulations, viz. ≲1 M⊙ s−1
(Fig. 7 of [65]). Using this scheme, we model a dynamical
descalarization. As shown in Fig. 1, the system begins in a
particular state (shown by the black star), gains some mass
(green star), and the descalarization process begins (orange
line), until eventually the system oscillates around a certain,
stable state on the new branch (blue star). The bottom panel
of Fig. 1 shows the evolution of ϵc in this example; the
increase of ϵc from 1.6 × 1015 g cm−3 to ∼2 × 1015 g cm−3
in ∼ 4 ms indicates that a rapid compactification accom-
panies descalarization.
We have verified that the (post)descalarization dynamics

remain the same if the bulk is accreted with longer waiting
time, and that our results are not overly sensitive to the
particulars of the chosen accretion profile, as described
above, by studying other bulk impositions (see the
Supplemental Material [37]). Nevertheless, we stress that
our profiles are not representative of realistic astrophysical
processes, though they allow us to capture the salient
features of a gravitational phase transition. Importantly,
magnetic fields only couple weakly to the scalar sector, and
thus even if the geometry of the accreted-mass buildup
(“mountain”) is sensitive to the former (e.g., [66]), the
descalarization dynamics, and resulting scalar-GW signal,
are not. The latter aspects are discussed below.
Results.—Introducing the auxiliary variables ψ ¼

α−1ð∂φ=∂tÞ and η ¼ X−1ð∂φ=∂rÞ, we have that the energy
Eφ and luminosity Lφ of the scalar field read (see
Supplemental Material [37])

Eφ ¼
Z

dr

�
r2AðφÞ2

2
ðψ2 þ η2Þ þ V

�
ð4Þ
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FIG. 1. Evolutionary track of an APR4, near-critical scalarized
star under accretion: gravitational mass, M, as a function of
central energy density, ϵc (top panel), together with the time
evolution of ϵc itself (bottom panel). The blue branch represents
weakly scalarized stars, while the red branch is strongly scalar-
ized. The green and blue stars mark the onset and the termination
of descalarization, respectively, while the black star marks the
initial state of the accretion simulation described in the main text.
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and

Lφ ¼ AðφÞ−2r2Xαψη; ð5Þ

which defines the corresponding energy leakage as

EðscalarÞ
GW ¼

Z
Lφdt: ð6Þ

For the simulation shown in the top panel of Fig. 1, the
scalar energy [Eq. (4)] plummets to zero, from its initial
value of 0.051 M⊙, after descalarization. The near zone

ðr ≪ λφÞ extraction of EðscalarÞ
GW suggests an energy loss≳ 40

times less than the decrease of Eφ, indicating that most of
the scalar energy transforms into gravitational binding
energy since the stellar radius shrinks from 11.56 to
10.36 km between the initial and final states, while
the (gravitational) mass increases by ≈0.013 M⊙. After
the emission propagates to distances comparable to λφ, the
dispersion suppresses the low frequency component(s) and
leads to a stretching of the waveform. The scalar energy
leakage ultimately saturates at super-Compton length
scales, where a reduction of factor ∼2 in the near-zone
radiation is seen due to the dispersion.
Assuming an observation duration of T ¼ 2 months,

over which the signal evolves slowly for mφ ¼ 10−14 eV
[21], we present the numerical evaluation of the signal
amplitude [Eq. (3)] for scalar GWs for α0 ¼ 10−2 at a fixed
distance L ¼ 10 kpc in Fig. 2. The kth notch, starting from
the right, plotted over the signal (black curve) stands for
t ¼ 10ðk−1Þ years, illustrating that the bulk of the signal

persists for ≲ centuries. We see that for T ¼ 2 months and
these theory parameters (see also below), the signal should
be detectable with sufficiently high signal-to-noise ratio
with the existing interferometer network out to distances of
L≲ 10 kpc, and out to a few hundred kpc with the
inclusion of the Einstein Telescope (ET). Note that the
distance and observation time T are, to a large degree,
degenerate. We find that increasing T by factor ∼2 allows
for events at distances of factor ∼21=3 farther out to become
visible, assuming a narrow-band search is carried out.
To quantify the detectability in general, we compared

outputs from a variety of simulations with varying α0. We
find a fitting to the root of the “effective” PSD, in units of
Hz−1=2, as

ffiffiffiffiffi
Sf

p
10−23

≈ 3

�
α0
10−2

��
T

5 × 106 s

�1
2

�
10 kpc

L

�3
2

�
f

300 Hz

�
0.34

;

ð7Þ

with the frequency of the signal approximated as fðL; tÞ ≈
2.42ðtþ LÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tðtþ 2LÞp
Hz [cf. Eq. (53) in [21]]. We note

that larger T may be used for greater retarded times since
the timescale for the frequency evolution, f= _f, scales as t,
thus opening the possibility for much larger effective PSD.
In particular, since the signal [Eq. (7)] is quasicontinuous,
an extended narrow-band search could be carried out if one
knew when the system descalarized, as the dispersion
relation directly equates the relative delay with a frequency.
Furthermore, multiple sensors can act to “fuse” data
together in a way that improves the overall signal-to-noise
ratio beyond that inferred from Eq. (7) (see Sec. IV. E. of
[67] for a detailed comparison of achievable sensitivities
with different networks).
Connection to matter phase transitions.—The phase

transitions from scalarized to nonscalarized states consid-
ered here bear striking similarities to the material phase
transitions from confined hadronic to deconfined quark
matter. In both cases, there can be stars of equal mass but
different radii that are separated by a range of central
energy densities where the stable solution space is empty
(i.e., twin stars [15–18]). The astrophysical implications of
matter phase transitions, and especially the GW signatures,
have attracted considerable attention recently (see, e.g.,
Refs. [27–32]). In each case there will be a descalarization
analog, with the main difference being an additional
channel for energy loss: the scalar radiation.
As a proof of principle we concentrate on accretion in

this Letter. However, such analogs can be found also in
cases without accretion. For a hot, newborn neutron star
with an EOS that permits negatively charged, nonleptonic
particles (e.g., hyperons or quarks), the hydrostatic support
available to the star will reduce when neutrinos diffuse out
of the core [68]. This can lead to a delayed phase transition
with a number of interesting observational signatures [29].

10 30 100 300 1000
10-25

10-24

10-23

10-22

10-21

FIG. 2. Effective, root PSD
ffiffiffiffiffi
Sf

p
[Eq. (3)] at L ¼ 10 kpc and

T ¼ 2 months for the strain of the scalar-induced GW mode as a
function of retarded time from 1 to 103 years (black curve; the kth
dot from the right along the curve represents 10ðk−1Þ years).
Overlaid are the sensitivity curves of existing and upcoming GW
interferometers.
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A descalarization analog of this delayed transition exists:
depending on the chemical composition and theory param-
eters, the scalarized star may migrate to a non- or weakly
scalarized branch when the temperature drops below a
critical threshold. A similar picture exists for cases where
the star is centrifugally or magnetically supported: spin-
down or field decay reduces the maximum mass of the
system, which could force the star to transition [69,70].
Studying these processes in detail lies beyond the scope of
the present Letter, though complementing scalar-flavor
phase transitions with studies of neutron star mergers in
STT is likely to offer rich phenomenology as concerns the
evolutionary track of neutron stars. This will be, on one
hand, due to the additional channel of energy loss that, even
if not detectable, will alter the merger remnant evolution.
Some properties of the postmerger remnant, such as its
oscillations frequencies, can also differ from GR due to the
scalarization-related changes in stellar structure [71].
We point out that we discuss twin stars only as an

interesting analogy with the observed process of descala-
rization. Our simulations and the predicted observational
signatures are completely independent of the existence of
such stars (the astrophysical relevance of twin stars is
discussed in, e.g., [72–75]).
Discussion and observational prospects.—While a

detection of scalar GWs of the form shown in Fig. 2 could
be used to unambiguously identify that a descalarization
took place, (massive) STTs may already leave traces in the
events that lead up to the transition. A promising avenue for
the formation of scalarized stars, which are also prone to
overaccretion and descalarization, comes from binarymerg-
ers. The scalar field associated with the binary constituents
may become excited during inspiral, leaving a clear imprint
on the GW signal by accelerating the coalescence [71] (see
also Refs. [76–80]). Despite progress, though, certain key
effects such as rotation (see, however, Refs. [81]) are still
missing from numerical simulations of mergers involving
stars in STTs. This means that direct waveform comparisons
with observed inspirals cannot be achieved yet. On the
electromagnetic side, however, binary neutron-star merger
events are also the progenitors for short GRBs, which offer
avenues for indirectly observing a descalarization.
Many GRBs exhibit extended emissions at short wave-

lengths following the main burst. Emission profiles that
display a long-lived x-ray “plateau” are suggestive of
persistent energy injections (“magnetar wind”) from a
massive, newborn neutron star [24,25]. Suppose that
tensorial GWs were coincidentally observed with a short
GRB (as occurred for GW170817 [82]), followed by a
plateaulike x-ray afterglow. The detection of a “scalar” GW
afterglow some time after the main event, which may
persist for ≲ centuries (see Fig. 2), would clearly indicate
that the remnant peeled its scalar hair. Even without such
measurements, the nature of the electromagnetic afterglow
will be affected by a scalar shedding as the star condenses

(see Fig. 1). The spin-down power associated with mag-
netic dipole braking scales as Ldip ∝ R6⋆ (e.g., [25]), and so
a decrease in R⋆ by ∼5% may then lead to a drop in the
x-ray flux by ≲30% over the descalarization timescale
ð∼5 msÞ. Afterglow light curves in this case may appear as
“broken plateaus,” like that of GRB 170714A [83].
Conservation of angular momentum, however, implies that
the star should spin up as a result of descalarization, and
thus the drop may be less pronounced because Ldip ∝ Ω4.
Likewise, the temperature of the star should increase from
the compactification. Magnetohydrodynamic processes
involving magnetic field reorganization may also take
place, extending the dip timescale and enriching the
phenomenology.
A descalarization-induced compactification may itself

instigate a nuclear phase transition (e.g., quark deconfine-
ment) due to the sudden increase in the core density
[29,68]. Alternatively, the scalarized neutron star will
collapse to a hairless black hole if no stable branch is
available. From a scalar-GW perspective, these events
would be indistinguishable [22] but could be told apart
via the nature of the x-ray afterglow. If emissions persisted
after the scalar energy release, a gravitational phase
transition would be the favored scenario since black hole
formation, which effectively terminates the stellar wind that
is pumping radiation energy into the forward shock, should
instead manifest as a sharp drop in the flux (as is often
observed [26]).
The closest GRBs that have thus far been observed are

GRBs 980425 and 170817A at distances of ∼40 Mpc
[82,84]. This distance is factor ∼4000 times larger than that
plotted in Fig. 2. As such, unless α0 is ≳10 times bigger
than the value we have used and year-long (T ≳ yr)
searches are carried out, we are unlikely to observe this
scenario in its full capacity even with Cosmic Explorer [85]
or ET [86–88] because of the L−3=2 dependence in the
effective PSD [Eq. (7)], should such stars exist. Other
multimessenger possibilities for identifying a neutron star
postdescalarization come from neutrino bursts (from Urca
cooling or shocks triggered by compactification; cf. [89]) or
indeed a burst of GWs (if the now descalarized star
collapses) at some later time, either of which would again
be hard to explain with a black hole remnant. It is also not
necessarily the case that a neutron star must descalarize
shortly after birth. Mature stars residing in the disks of
active galactic nuclei or high-mass x-ray binaries [90] are
particularly disposed to overaccretion. Accretion-induced
collapse rates could reach ≲20 Gpc−3 yr−1 from the former
channel [91]. Descalarizations of Galactic stars via the
latter channel should be observable with high SNR by ET.
Overall however, in the absence of a detection of scalar
GWs, one may not be able to tell whether a phase transition
was of a nuclear or gravitational nature. This exemplifies
further the well-known degeneracy between modifications
of gravity and EOS uncertainty [10,34,71].
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