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The excitation of f-mode in a neutron star member of coalescing binaries accelerates the merger course,
and thereby introduces a phase shift in the gravitational waveform. Emphasizing the tidal phase shift by
aligned, rotating stars, we provide an accurate, yet economical, method to generate f-mode-involved,
premerger waveforms using realistic spin-modulated f-mode frequencies for some viable equations of
state. We find for slow-rotating stars that the dephasing effects of the dynamical tides can be uniquely,
equation-of-state-independently determined by the direct observables (chirp mass M, symmetric ratio η,
and the mutual tidal deformability Λ̃), while this universality is gradually lost for increasing spin. For
binaries with fast rotating members (≳800 Hz) the phase shift due to the f-mode will exceed the
uncertainty in the waveform phase at reasonable signal-to-noise ratio (ρ ¼ 25) and cutoff frequency of
≳400 Hz. Assuming a high cutoff frequency of 103 Hz and fast (≳800 Hz) members, a significant phase
shift of ≳100 rads has been found. For systems involving a rapidly spinning star (potentially the secondary
of GW190814), neglecting the f-mode effect in the waveform templates can therefore lead to considerable
systemic errors in the relevant analysis. In particular, the dephasing due to f-mode is larger than that caused
by equilibrium tides by a factor of ∼5, which may lead to a considerably overestimated tidal deformability
if dynamical tidal contribution is not accounted. The possibility of accompanying precursors flares due to
f-mode excitation is also discussed.
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I. INTRODUCTION

A. The context

The macroscopic and microscopic properties of neutron
stars (NSs) in coalescing binaries are imprinted in the
emitted gravitational waveforms, thus the precise knowledge
of the waveform morphology is of fundamental importance
in extracting NS parameters. Adopting the point-particle
approximation for the gravitational wave (GW) analysis, the
chirp mass and the symmetric mass of binaries can be
estimated from the first order post-Newtonian (PN) phase
evolution of GWs, though with a different degree of
accuracy [1–6]. Beyond the point-particle baseline approx-
imants, the internal structure of the NS members can also be
probed: the quadrupole deformations induced by the tidal
forces in the constituents will affect the binary evolution and
thus the associated waveform. Two sorts of (gravitoelectric)
tidal effects are involved in the signal, viz. the equilibrium
tides due to the induced tidal deformations, and dynamical
tides due to the resonant excitation of the various neutron star
quasinormal modes (QNMs). Equilibrium tidal effects from
Newtonian [5,7], 1 PN [8,9] up to 2.5 PN, levels [6] are

encapsulated in the tidal deformability, and their traces in the
signal have already been observed with the current detectors
(e.g., [10]; see also Ref. [11] for a recent review). Dynamical
tides, while being subdominant in the low frequency regime,
can affect the waveform to a similar extent as the equilibrium
ones at the final stage of inspiraling, predominantly due to
the f-mode excitation [12–15].
For rotating NS progenitors, the spin effects also con-

tribute to phase shift thus introducing some degeneracy
with the tidal contributions [cf. Eq. (3) of [16] ]. For
instance, the spin orbit (comes at 1.5 PN order) and the
secondary spin-spin (comes at 2 PN order) terms appear in
the PN expression of GW phase [17–19]. In addition,
rotation will induce a quadrupole deformation in stars,
reshaping accordingly the form of gravitational potential.
The deformation is larger for a stiffer equation of state
(EOS) [20] since NSs tend to have a larger radius [21]. The
change in the gravitational potential modifies the relation
between the angular velocity and the separation of stars.
Binary motion is affected by this self-spin effect with
leading order term coming at the same level as spin-spin
effect (i.e., 2 PN) [22,23]. At leading-order, the self-spin
effects in GW dephasing are however much smaller than
the tidal one (see, e.g., Fig. 4 of [24]). Although Nagar et al.
[25] have shown that the contribution of higher order terms*hao-jui.kuan@uni-tuebingen.de
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of self-spin can be stronger, the enhancement is typically a
factor of ∼2. It is thus not expected that the inclusion of
these higher-order self spin effects will contribute more to
the waveform dephasing than the tidal ones.
In addition, rotation indirectly modifies tidal effects by

shifting and splitting QNM spectrum of NSs, which in turn
affects the onset of the dynamical tides leading to waveform
altering [26]. In particular, the downward-tuned frequencies
of counterrotating QNMs lead to stronger tidal excitations.
Although there are higher order couplings between tides and
rotation, e.g., tide-spin terms, these are considerably weaker
than the aforementioned effects, and even the accuracy of
the state-of-the-art numerical relativity (NR) is incapable of
sizing these effects [16]. Owing to the interplay between spin
and tides, the ambiguity in the spins of inspiraling NSs
would consequently obscure the determination of tidal
dephasing in the gravitational waveform of binary mergers
especially if one of the NSs spins rapidly (e.g., [27,28]).
Concluding for the precise extraction of the source param-
eters, it is thus important to discriminate tidal dephasing
from spin-induced phase shift.
Currently, several EOS candidates survive the observations

of pulsars [29,30], and GW170817 as well as its electromag-
netic counterparts [10,31–33]. Future GW detection is likely
to further constrain the EOS by extracting the tidal dephasing
from thewaveform. Although analytic models of equilibrium
tides have been derived, f-mode excitation has to large extent
not yet been explored. Given that f-mode can cause a
significant dephasing in some circumstances, disregarding
these effects will lead to systematic errors in estimating the
tidal parameters (e.g., [34,35]). In a pursue of reliable
analysis, it is therefore necessary to take f-mode effect
into account when constructing gravitational waveform
templates for those cases [35–37].
The tidal effects of rotating NSs in binaries have been

investigated in [26] by adopting an approximation for the
spin modulation in frequencies of QNMs. The approxi-
mated modulation is insensitive to the EOS and the stellar
mass [see Eq. (5.7) therein], while the realistic modulation
can vary by ≲15% for different stars and EOS (cf. Fig. 10
in [38]). In the present article, we reexamine the measur-
ability of dynamical tidal dephasing by using the realistic
spin-modulation in the QNM spectrum, and a PN evolution
for the inspiral part.

B. This work

On top of a great body of existing literature, we collate in
the following the original contribution of this article to
address f-mode effect in GW:
(1) EOS-independent Hamiltonian functional. For

slow-rotating binary NSs, the Hamiltonian gov-
erning the binary evolution, including the tidal
effects, is shown to be EOS-independently recon-
structable from GW observables M, η, and Λ̃
[Eq. (24)] since f-mode effects can be prescribed

universally by Λ⋆ [Eqs. (21)–(23)]. Assuming we
have a well-measured chirp mass [2,4,39], sayM ¼
1.146 (the value for GW170817 [40]), the accumu-
lated GW phase Ψtot is shown to be a universal
function of the mass of the primary M⋆ (Fig. 4).

(2) “Observability” of the spin effects in tidal dephas-
ing. Adopting five EOSs with representative spin
rates, we find for symmetric binaries (masses and
spins of both stars are the same) that the tidal
dephasing piles up rapidly when GW has a frequency
fgw > 400 Hz (top panel of Fig. 5), implying that the
information of dynamical tides concentrates in this
late part of the waveform. Furthermore, the tidal
dephasing accumulated from fgw ¼ 20 to 1000 Hz
is larger for higher stellar spins and/or stiffer EOS
(bottom panel of Fig. 5). For the stiffest EOS
considered, MPA1, we find a few tens of rads of
dephasing if two stars rotate moderately, while a few
hundreds of rads can be accumulatedwhen stars rotate
rapidly. Although we consider symmetric binaries in
Fig. 5, the conclusions are expected to begeneral since
(i) mode frequencies are reduced further by faster
rotation, enhancing tidal dephasing, and (ii) NSs with
stiffer EOS tend to have larger radii thus more notable
tidal deformations. Despite of its dependence on
EOS, the tidal dephasing can be expressed as a
universal relation with respect to a dimensionless
spin [Fig. 6; Eq. (29)].

(3) Fast-spinning NS. In general, the signal-to-noise
ratio (SNR) needed to measure the tidal dephasing
ΔΨT , which is defined as ρthr, depends on the cutoff
frequency of the data stream fmax, and the spin of the
primary Ωs;⋆ ¼ 2πνs;⋆. Taking a specific binary as
an example, we see that the error in GW phase
decreases, while the tidal dephasing increases for
larger fmax (top panel of Fig. 7). To emphasize how
these two parameters affect the measurability of tidal
dephasing, we plot ρthr as a function of νs;⋆ for four
representative cutoffs. We see that ρthr decreases
logarithmically as fmax is linearly increased; for a
reasonable SNR ρ ¼ 25, the tidal dephasing may be
detected only for νs;⋆ > 600 Hz if the cutoff is
400 Hz, while a spin > 400 Hz may already be
detectable if the cutoff is 100 Hz or higher.
Using our approach, the tidal dephasing can be

observed for the SNR of the event GW190814
ρ≲ 20 if (i) the secondary of GW190814 is a
fast-rotating NS with νs;⋆ > 800 Hz, (ii) the star
almost aligns with the orbit, and (iii) the waveform is
observed up to merger, which occurs at ∼360 Hz
(Sec. IV). In other words, the nature of the secondary
of GW190814, which may have been either the
heaviest NS or the lightest black hole that has ever be
seen, may be determined by hunting the tidal
dephasing. The sizable f-mode effects quantified
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in the present article indicate that templates includ-
ing f-mode effects are imperative for inferring EOS
from a more accurate GW observation in the near
future. That said, if a rapidly rotating NS is involved
in a coalescing binary, as it is claimed for the
secondary of GW190814 [41–43], then the f-mode
effects enhanced by the fast rotation will be un-
ambiguously measurable in the signal, which may
even be more significant than the imprint of equi-
librium tides. Although neglecting f-mode excita-
tions will not affect noticeably the estimates of
the chirp mass and symmetric mass ratio since the
overall tidal effects in waveform are minor to the
influences of these two parameters, the inference of
tidal parameters, and in turn the EOS, will be
significantly biased.
In addition, the f-mode excitation in fast-rotating

stars may generate enough strain to yield the crust.
If certain conditions are met, some flares may be
launched before merger. These precursors are how-
ever not associated with the resonance shattering
scenario [44–46]. Instead, non-resonantly-excited
f-modes may yield the crust owing to their strong
coupling to the exterior tidal field. We find that, for
the specific case of GW190814, such a precursor
may be emitted at ∼0.6 s prior to merger. The
nonobservation does not necessarily exclude the
NS nature of the lighter member since several factors
could affect the formation of precursor flares.
The article is organized as following: We sum-

marize the present status of the analytical waveform
derived from the effective-one-body approach in
Sec. II. Tidal dephasing is numerically studied in
Sec. III, and its reliability is tested against the
waveform models discussed in Sec. II. The depend-
ence on EOS, and the tidal effects of spinning NS are
also detailed there. The dephasing due to f-mode
excitation and its influence in the waveform analysis
are investigated for GW190814-like events in
Sec. IV, where we also assess on the possibility
of electromagnetic counterparts. A discussion of the
results is provided in Sec. V.
Unless stated otherwise, all quantities are given in

the unit of c ¼ 1 ¼ G.

II. TIDAL DEPHASING: ANALYTIC MODELS

Under the stationary phase approximation (SPA) and by
ignoring the PN modifications in the GW amplitude A,1

the frequency-domain gravitational waveform can be
expressed by [3,4]

hðfgwÞ ¼ Af−7=6gw eiΨðfgwÞ: ð1Þ

This form is generic for all kinds of compact binaries
for fgw ¼ Ωorb=π the GW frequency, and Ωorb the orbital
frequency. The phase ΨðfgwÞ is related to the time-domain
phase ϕðtÞ via

ΨðfgwÞ ¼ 2πfgwto − ϕðtoÞ −
π

4
; ð2Þ

and obeys the equation [6,15,48]

d2Ψ
dΩ2

orb

¼ 2Qω

Ω2
orb

; ð3Þ

where to is a reference time with ϕo ¼ ϕðtoÞ being the
corresponding phase, andQω is a dimensionless measure of
the phase acceleration defined as

Qω ¼ Ω2
orb

�
dΩorb

dt

�
−1
: ð4Þ

The construction of precise waveforms demands accu-
rate evolution of coalescing binaries. The PN equations
of motion describe most part of the observed inspiraling
evolution with adequate accuracy [49]. Still the PN
approximation gradually fails as the binary approaches
the plunge, merger, and finally the ringdown phases. This
lack of applicability for high orbital frequencies and the
postmerger dynamics motivated the so-called effective-
one-body (EOB) formalism, which resums the PN expan-
sions to account properly for the higher-order effects
[50,51]. In addition, the EOB analytic dephasing can be
“calibrated” with the late-time NR results [52] even when
tidal effects are taken into account [53,54]. However, the
latter hybrid EOB and NR model is significantly more
time consuming than the PN formalism. In the present
article, we aim to offer an economical waveform variant
capable to probe the internal physics of NSs from
premerger waveforms (≲103 Hz). To this end, the PN
framework proves sufficiently accurate [55–57] (see
also below).
Tidal interactions among the binary members (i) accel-

erate the shrinking rate due to orbital energy transfer to
QNMs [12,58], or, in another perspective, effectively
amplify the strength of the gravitational potential in the
EOB framework [57,59,60], (ii) enhance the energy flux
carried by GW due to tidal deformations (see, e.g., Eq. (3.6)
of [8]), and (iii) increase the angular momentum loss. As a
result, certain tidally driven modifications in A and Ψ will
be encoded, while the change in A in minor.

1In general, the amplitude AðfgwÞ depends on the internal
structure (or finite size effects) of the binary members, the
omission of these higher PN corrections does not affect the
accuracy of SPA. In practice, SPA will be quite accurate up to
the merger [6,47], and thus this approximation will not affect
significantly our results.
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The effect of equilibrium tides in the phase shift is
mainly governed by the quadrupolar tidal deformability of
the NSs in the binary [5,7],

Λ ¼ 2k2
3C5

; ð5Þ

where k2 is the (dimensionless, quadrupolar) tidal Love
number, and C ¼ M=R is the stellar compactness. The
contribution of the higher-order Love numbers in the
phase-shift is significantly smaller [16]. On the other hand,
the dynamical tides are due to the excitation of oscillations
in the individual NSs, predominantly by the quadrupolar
(l ¼ 2) component of the tidal potential built by the
companion (see, e.g., the discussion in the Appendix A.
2 of [6]). Among the various low or high frequency modes
(p-, g-, i-, w-, etc.), the tidal response of the l ¼ 2 f-mode
is much more significant [6,12,16,61]. To study the leading
order tidal phenomena, we restrict ourselves to the physics
(f-mode, tidal potential, and deformability) at the quad-
rupolar level. Our methodology is obviously applicable to
higher-order (l > 2) f-modes as well as other types
of modes.
Stellar spins also influence the binary evolution via spin-

orbit, self-spin couplings [17,18,62,63], and some higher
order terms such as spin-tidal coupling. Incorporating the
aforementioned physics, and by denoting a certain param-
eter X of the primary (companion) as X⋆ (Xcomp), the GW
phase can be expressed as

Ψ ¼ Ψðfgw; T ;S;ZÞ; ð6Þ

where T ¼ ðΛ⋆;ΛcompÞ, S ¼ ðνs;⋆; νs;compÞ, and Z ¼
ðM⋆;Mcomp; R⋆; RcompÞ. In the present article, however,
we focus on the influence of spins in the dynamical tides,
and we will ignore other spin-related dephasing such as
spin-orbit, spin-spin, self-spin, etc.

A. Analytic tidal dephasing

Equilibrium tides are usually addressed by extending
the effective gravitational potential in EOB to include an
enhancement due to higher-order PN contributions [57,59],
while dynamical tides can be investigated either by
introducing associated kinetic terms to the Hamiltonian
[14,64] or by generalizing the Love number k2 to a running
parameter (effective tidal responses) [13,14,65]. We adopt
the PN evolution of binaries together with a kinetic term
for dynamical tides to investigate the accumulated tidally
induced dephasing during the premerger stages (fgw ≲
103 Hz). This approach is numerically cheaper and agrees
very well with the more sophisticated EOB method
(cf. Fig. 1 in [15]; see also Fig. 2). To demonstrate the
faithfulness of our code, we will compare our results with
several analytical waveforms in this section.

We begin with a brief summary of the waveform models
that we are going to compare to. The 1 PN order phase shift
due to the equilibrium tides in the primary, based on the
TaylorF2 model, reads as [8]

ΔΨeq⋆ ¼ −
3Λ⋆
128

ðπMfgwÞ−5=3x5½a0 þ a1x�;
≈ Ψðfgw; T ;S;ZÞ −Ψðfgw;O;S;ZÞ; ð7Þ

where x ¼ ½πðM⋆ þMcompÞfgw�2=3, O ¼ ð0; 0Þ denotes a
null pair. The chirp mass and the symmetric mass ratio are
defined, respectively, by

M¼ ðM⋆McompÞ3=5
ðM⋆þMcompÞ1=5

; and η¼ M⋆Mcomp

ðM⋆þMcompÞ2
: ð8Þ

The coefficient

a0 ¼ 12
h
1þ 7η − 31η2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2Þ

i
ð9aÞ

is the Newtonian contribution, and

a1 ¼
585

28

�
1þ 3775

234
η −

389

6
η2 þ 1376

117
η3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1þ 4243

234
η −

6217

234
η2 −

10

9
η3
��

ð9bÞ

is the 1 PN one. Although Eq. (7) encodes solely the tide
in the primary, the effects from the companion can be
linearly added to the gross influence, which can be
simplified as [66,67]

ΔΨeq⋆ þΔΨeq
comp ¼−

3Λ̃
128

ðπMfgwÞ−5=3x5

×

�
39

2
þ
�
3115

64
−
6595

364

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 4η

p δΛ̃
Λ̃

�
x

�
;

ð10Þ

where

Λ̃ ¼ 16

13ðM⋆ þMcompÞ5
½ðM⋆ þ 12McompÞM4⋆Λ⋆

þ ðMcomp þ 12M⋆ÞM4
compΛcomp� ð11Þ

is the mutual tidal deformability, and

δΛ̃¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p �
1−

13272

1319
ηþ8944

1319
η2
�
ðΛ⋆þΛcompÞ

þ
�
1−

15910

1319
ηþ32850

1319
η2þ3380

1319
η3
�
ðΛ⋆−ΛcompÞ

�
:

ð12Þ
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We note that δΛ̃ is typically much smaller than Λ̃, and will
vanish for symmetric binaries.
The above 1 PN form can be extrapolated to 2.5 PN with

the aid of EOB treatment as shown in [6]; for symmetric
binaries, the equilibrium tidal effect of the primary leads to
the dephasing

ΔΨeq⋆ ¼ −
117Λ⋆
128

x5=2
�
1þ 3115

1248
x − πx3=2

þ 28024205

3302208
x2 −

4283

1092
πx5=2

�
; ð13Þ

and can be doubled to include the influence of the companion.
The 2.5 PN correction to the phase acceleration (4),

Q̃T
ω ¼ −

65

32
x5=3

�
1þ 4361

624
x2=3 − 4πx

þ 5593193

122304
x4=3 −

4283

156
πx5=3

�
; ð14Þ

is also given in [6]. We will compare our results to analytic
forms of tidal dephasing and of phase acceleration.We note
that there is a mutation of 2.5 PN tidal phase approximant
derived by Henry et al. [68], which is slightly different
from the one in [52]. However, they match up to 1 PN tidal
phasing.

This 2.5 PN TaylorF2 model was later phenomenologi-
cally calibrated by numerical relativity simulations in [53]
to capture dynamical tidal effects by replacingΛ in Eq. (13)
with Λð1þ 12.55Λ2=3x4.240Þ. Ignoring the contribution of
δΛ̃, the authors further show that one can directly general-
ize the above phase expression, which is for a single star in
symmetric binaries, to that for both stars in asymmetric
systems by substituting the denominator of the prefactor
with 256η and changing Λ⋆ to Λ̃, i.e.,

ΔΨeq⋆ þΔΨeq
comp

¼ −
117

256η
x5=2Λ̃ð1þ 12.55Λ̃2=3x4.240Þ

×

�
1þ 3115

1248
x− πx3=2 þ 28024205

3302208
x2 −

4283

1092
πx5=2

�
:

ð15Þ

As will be shown in Fig. 2, this NR-reshaped, TaylorF2
model matches well to our numerical results, thus we will
use the above NR-reshaped form for statistical estimation in
Sec. III D. In addition to TaylorF2, the NR-calibrated form
for TaylorT2 has also been derived in [16], which gives rise
to the dephasing

ΔΨeq⋆ þ ΔΨeq
comp ¼ −

117Λ̃
64

x5=2
1 − 17.428xþ 31.867x3=2 − 26.414x2 þ 62.362x5=2

1 − 19.924xþ 36.089x3=2
: ð16Þ

Although several models for equilibrium tides have been
developed, dynamical tidal dephasing due to the quad-
rupolar f-mode in the primary is derived recently by
Schmidt and Hinderer [15], and is given by

ΔΨdyn⋆ ¼ −
10

ffiffiffi
3

p
π − 27 − 30 log 2

96η
ðπM⋆fgwÞ11=3

×
Λ⋆M4⋆ω−2

f

ðM⋆ þMcompÞ6
�
155 − 147

M⋆
M⋆ þMcomp

�
;

ð17Þ

where ωf is the frequency of the f-mode. This analytical
phase shift agrees with the tidal EOB model for fgw ≲
103 Hz [15].

III. TIDAL DEPHASING: NUMERICAL RESULTS

The Hamiltonian describing the binary evolution is
[12,38,64]

HðtÞ ¼ ðHorb þHreac þHosc þHtidÞðtÞ; ð18Þ

where Htid and Hosc are the Hamiltonians for the equilib-
rium and dynamical tidal effects, respectively. We consider
the conservative motion,Horb, up to 3 PN level, and include
the gravitational backreaction, Hreac, at 2.5 PN order [38].
The explicit forms for the point-particle part of HðtÞ, viz.
Horb andHreac, are rather long and are not the subject of the
present article. We thus omit them here but we refer the
interested reader to [69,70]. Nonetheless, we will provide
the form of the tidal parts Hosc þHtid in Sec. III B, for
which the coupling strength of modes to the external tidal
field is a crucial parameter.

A. Numerical setup and validation

The binary evolution is obtained by solving the
Hamiltonian equations associated to the Hamiltonian
(18) (see, e.g., Sec. 3 of [38] for explicit expressions),
where the initial separation is set for a binary in a
quasicircular orbit with initial orbital frequency at
10 Hz. Using the fourth order Runge-Kutta method with
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a time step of 5 × 10−4Porb for orbital period Porb, we
evolve the binary up to fgw ¼ 1000 Hz. The resolution has
been shown to be adequate for achieving numerically
converging results.
In Fig. 1, we compare our result of phase acceleration

Q0
ω, for a particular symmetric binary with a nonspinning

primary, with Q̃T
ω given by Eq. (14). We see that our result,

which includes the f-mode effect, has a deviation ≤ 20%
from the analytic result for fgw < 500 Hz, while larger
deviation is observed for high frequencies. The growing
deviation can be attributed to f-mode excitation, which is
absent in the analytic expression (14). To demonstrate that
the deviation originates from the presence of f-mode, we
add in the plot the phase acceleration Q100

ω , for the same
binary but with the primary spinning at 100 Hz. The
enhanced f-mode effect in the latter spinning case man-
ifests as the larger deviation from Eq. (14). In addition, the
inclusion of f-mode effect gives rise to a more negative
phase acceleration, suggesting a faster merging (the so-
called tidally induced plunge [12]).
On the other hand, in Fig. 2, we compare the GW phase

of our simulation (blue curve) with the following approaches
to further demonstrate the reliability of our code:

(i) 1 PN TaylorF2þ f-mode [Eq. (10) and Eq. (17)],
(ii) 2.5 PN TaylorF2þ f-mode [Eq. (13) and Eq. (17)],
(iii) NR-calibrated TaylorF2 [Eq. (15)], and
(iv) NR-calibrated TaylorT2 [Eq. (16)].

Denoting the difference between our tidal phase shift to a
certain model as ΔðΔeqþdynÞ ¼ Δours

eqþdyn − Δmodel
eqþdyn, we see

that the deviation from the aforementioned models is less
than 1 rad overall, and most of the deviation piles up after
fgw ≳ 400 Hz. Our numerical scheme produces smaller
dephasing compared to the two non-NR-corrected models,
meaning the tidal effect in our scheme is a bit weaker.

However, the shifts are greater than those of NR-calibrated
models when fgw is less than a certain value. This “sign-
changing” behavior is often seen when it comes to compar-
ing different waveformmodels (e.g., [15,54,71]). Among the
considered models, the model using TaylorF2 with NR
waveforms is in better agreement to our result with deviation
of about ∼0.1 rads.
As the QNM spectrum depends on EOS and spin, we

will address how they will affect the tidally induced phase
shift, notably the dependence on EOS (Sec. III B) and the
tidal effects of spinning stars (Sec. III C). In general the
spin itself will lead to certain dephasing due to, e.g.,
spin-orbit, spin-spin, and self-spin couplings. The total
dephasing thus consists of the tidal and spin-included
contributions. The accurate identification of the tidal part
accurately is crucial in acquiring the values of the source
parameters; some discussion on this issue will be provided
at the end. Before we investigate the aforementioned
aspects, we first attain confidence on the results of our
code by comparing with the analytic forms obtained via PN
expansions, the EOB scheme, and the phenomenological
models fitting to NR simulations.

B. An EOS-independent tidal Hamiltonian

In general, stellar oscillations in GR will cause pertur-
bations in metric fields, which are damped due to GW
emission in a timescale set by the imaginary part of mode
frequencies. In addition, shear and bulk viscosity work
to damp the mode as well. For f-modes, however, the
viscosity damping timescale is longer than the one of
gravitational damping (e.g., [73]). In the present article, we
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FIG. 1. Numerically estimated phase acceleration QT
ω ¼

fQ0
ω; Q100

ω g [Eq. (4)] and the analytic 2.5 PN form Q̃T
ω [Eq. (15)]

(top panel). The relative deviation between QT
ω and Q̃T

ω is shown
in the bottom panel.

FIG. 2. Tidal dephasing, including equilibrium and dynamical
tides, from our code (blue) and several analytic models (see the
main text) as functions of fgw (top panel). The difference of each
model to ours is shown in the bottom panel. For this plot, we
consider a symmetric binary with M⋆ ¼ 1.3 M⊙ ¼ Mcomp and
the MPA1 EOS [72]. The results shown here account only for the
tides in the primary, thus the total effect is twice as big.
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will not include the damping of f-modes as they are
gradually excited. The tidal dephasing would have been
only slightly smaller if the f-mode damping was included.
Therefore, the small contributions from the mode-induced
metric perturbation will be ignored, and the tidal parts of
Hamiltonian has the form [cf. Eqs. (16) and (25) in [38] ]

Htid ¼ −
2M⋆Mcomp

aR⋆

X
α

Wlm

�
R⋆
a

�
l
R½q̄αQαe−imϕc �; ð19Þ

Hosc ¼
1

2

X
α

�
pαp̄α

M⋆R2⋆
þM⋆R2⋆σ2αqαq̄α

�
þ H:c:; ð20Þ

where we focus on the tidal activity in the primary. Here α
labels different QNMs, ϕc is the phase coordinate of the
companion, qα are the mode amplitudes, and pα are the
canonical momenta associated to qα. The (inertial-frame)
eigenfrequency of the excited mode is σα ¼ ωα þ i=τα,
where ωα is the frequency, and τα the damping timescale.
The overhead bar denotes complex conjugation. In the
present article, we investigate the tidal excitation of modes
in NSs with aligned spins, thus only l ¼ m modes will be
relevant. In addition, as stated above, we will limit our
study to the l ¼ 2 ¼ m f-mode hence we will drop the
subscript α hereafter, and denote its coupling strength as
Qf, which should not be confused with the phase accel-
eration Qω defined in Eq. (4).
We introduce the primary-based, dimensionless

quantities

AðΛ⋆Þ ¼ QfR⋆=M⋆; ð21aÞ

BðΛ⋆Þ ¼ R⋆ωf; ð21bÞ

which, if the primary is nonspinning (i.e., ωf is the mode
frequency), can be expressed as functions of Λ. From the
numerical values of A and B, we find the following fitting

logA ¼ −0.2887þ 0.2766 logΛ⋆ − 0.0094ðlogΛ⋆Þ2;
ð22Þ

and

logB ¼ −1.0644þ 0.0001 logΛ⋆ − 0.0096ðlogΛ⋆Þ2:
ð23Þ

The relations are plotted in Fig. 3, where the considered
set of EOS is labeled in the legend. This set of EOS is the
same as those adopted in [74], and we note that the latter
formula (23) has been introduced there. The former
universal relation connects the tidal overlap of f-mode
to the tidal deformability, which is presented for the first
time here, while that for r-mode has been developed in [75]
(see the right panel of Fig. 7 therein).

Substituting the previous quantities into the tidal
Hamiltonian, we get

HT ¼ Htid þHosc

¼ −
2M2⋆Mcomp

a3
Aq cosðmφcÞ þ

pp̄
M⋆R2⋆

þM⋆qq̄B2;

ð24Þ

which is a functional depending on the individual masses
M⋆ and Mcomp, the tidal deformability of the primary Λ⋆,
and M⋆R2⋆. The latter quantity is related to moment of
inertia [76] [see Eq. (12) therein]. The dependencies are all
detectable in GW analysis either directly or indirectly; the
measurement of the chirp massM and the symmetric mass
ratio η determine the individual masses, while the meas-
urement of Λ̃ returns R⋆ in a manner independent of the
Mcomp if the chirp mass is known [77,78]. In addition, the
mass ratio together with Λ̃ estimate the individual tidal
deformabilities since Λ⋆ and Λcomp relate to each other by
[see Eq. (8) of [32]]

Λ⋆ ≃ q6Λcomp: ð25Þ

The tidal Hamiltonian can therefore be EOS-independently
reconstructed from M, η, and Λ̃. To our knowledge, the
universality of the tidal phase shift, especially the
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FIG. 3. Universal relations connectingQfR⋆=M⋆ [Eq. (23); top
panel] and R2⋆ω2

f [Eq. (22); bottom panel] to the tidal deform-
ability of the primary Λ⋆.
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contributions of dynamical tides, has not yet been recog-
nized in the literature.
The significance of these three parameters in determin-

ing GW phasing goes, descendingly, from the chirp mass
to the tidal deformability. Denoting the GW phase accu-
mulated when fgw ranging between fmin ¼ 20 Hz and
fmax ¼ 1000 Hz as

Ψtot ¼
Z

fmax

fmin

dfgw

�
∂Ψ
∂fgw

�
Λ⋆;Λcomp;νs ;⋆;νs;comp

;

¼ Ψpp þ ΔΨT; ð26Þ

we plot for five EOS in Fig. 4 the accumulated GW phase
for binaries with fixed chirp mass M ¼ 1.186 M⊙ as
functions of M⋆. Here Ψpp is the part of point-particle
contribution, and ΔΨT is the tidal dephasing due to both
equilibrium and dynamical tides. The mass ratio of con-
sidered binaries can be obtained fromM andM⋆. We note
that the chosen EOS span a wide range of stiffness going
from the stiffest MPA1 down to the softest KDE0V. The
binaries considered in Fig. 4 undergo ∼2260 orbits in the
last ∼150 s of the coalescence, during which fgw climbs
from 20 Hz to 103 Hz. This corresponds to ∼4560 cycles of
time-domain gravitational waveform, while the frequency-
domain gravitational waveform (1) is found to oscillate
∼4775 cycles, i.e., Ψtot ≲ 3 × 104 rads; we recall that the
time- and frequency-domain phasing of waveforms are
connected via the relation (2). The phase varies ≲1% for
different η, while the variance of the finite size effects
encoded in Λ̃ is even smaller. In addition, the phase peaks at
M⋆ ¼ Mcomp ≃ 1.37 M⊙, indicating that symmetric bina-
ries will undergo more cycles before merger.

C. Spin modification in tidal dephasing

In spinning neutron stars the oscillation frequency splits
into co- and counterrotational components. The inertial-
frame f-mode frequency, ωf, of the primary shifts accord-
ing to [cf. Eq. (70) in [38]]

δωR
f ¼ −2πmð1 − CfÞνs;⋆; ð27Þ

where Cf depends on the eigenfunction of f-mode via the
integration of Eq. (71) in [38]. For a fast-rotating primary,
the frequency shift involving extra terms quadratic in νs;⋆
has been proposed in [79–81]. This quadratic term is
however negligible up to a spin of ≲1 kHz (cf. Fig. 1 of
[81]), about half the nonrotating mode frequency, thus the
linear modification shown in Eq. (27) is adequate for our
purpose. This shift (27) is negative for the l ¼ 2 ¼ m
f-mode given that Cf ≈ 0.3, leading to a smaller oscillation
frequency. As a consequence, the resonance between the
mode and the orbital frequency occurs earlier, rendering
stronger tidal dephasing. We note that the strength of the
tidal dephasing depends on the alignment of the spin in
general. In addition, modes with m ≠ 2 will be excited as
well in misaligned stars. The influence of the tilt angle of
spin in the tidal dephasing will be deferred to future study.
For symmetric binaries with Λ̃ ¼ 920, and two NSs

spinning at the same rate, we plot in the top panel of Fig. 5
the tidal dephasing induced by the primary for various
spins, as functions of fgw. We see that the phase shift
increases monotonically with νs;⋆, while a noticeable, rapid
growth is observed in the high GW frequency regime.
Taking the case with νs;⋆ ¼ 800 Hz for instance, the
dephasing piles up to about 20 rads as fgw goes from
20 to 500 Hz, while the accumulated dephasing is
≲150 rads from fgw ¼ 500 to 103 Hz. In the bottom panel
of Fig. 5, we show the tidal dephasing ΔΨT defined in
Eq. (26) as function of νs;⋆ for the five EOS used in Fig. 4.
We observe that the waveform dephasing depends on the
EOS, and is smaller for softer EOS due to the smaller radius
of the star or equivalently the higher compactness. Again,
we witness a rapid increase of jΔΨT j for higher spin due to
a different reason: For cases with fixed spin, the dephasing
grows faster for a cutoff fmax > 500 Hz since the infor-
mation of dynamical tides lies in the high frequency part of
waveforms. Moreover when a fixed fmax is assumed, the
dephasing enlarges due to earlier f-mode excitation. Given
that the dephasing caused by the equilibrium tide is only
≲10 rads, the contribution of f-mode excitation is domi-
nant for νs;⋆ > 200 Hz. In particular, the dephasing of
ΔΨT ∼ 90 rads at the right end of the green curve in the
bottom panel of Fig. 5 is mainly caused by f-mode
excitation.
Having seen that the Hamiltonian (24) for binaries

consisting of nonspinning stars can be EOS-independently
written down, we further find that this universality survives
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FIG. 4. Ψtot [Eq. (26)] for binaries with a fixed chirp mass
M ¼ 1.186 M⊙ as functions of M⋆ for the chosen EOS. Each
curve terminates at the maximal mass of the associated EOS.
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even for small stellar spins ≲100 Hz. For example, the
phase shift ΔΨT due to the f-mode in the primary is EOS
independent for νs;⋆ ≲ 100 Hz, as shown in the bottom
panel of Fig. 5. The reason is as follows: In reality, mode
frequency will be modified differently depending on the
EOS. Although this difference is minor for small spins, the
dependence of the phase shift on the EOS is becoming
noticeable as the stellar spin increases. The Hamiltonian is
EOS independent for most of the coalescing NS binaries
since its members are typically old and tend to rotate
slowly. Nevertheless, there may still be a number of NSs in
binaries with moderate and higher spin rates. A potential
case is the secondary of GW190814 [82], we will discuss
the specific case in Sec. IV.
In addition, we find that ΔΨT can be numerically

EOS-insensitively parametrized by a normalized spin,
defined by

ν̃ ¼ νs;⋆
�

M⋆
1.4 M⊙

�
2
�

R⋆
12 km

�
; ð28Þ

for a fixed Λ̃. For example, a universal relation,

ΔΨT ¼ −4.850 − 2.539 × 10−2ν̃þ 2.449 × 10−4ν̃2

− 1.429 × 10−6ν̃3 þ 3.026 × 10−9ν̃4

− 2.482 × 10−12ν̃5 rad ð29Þ

is found for Λ̃ ¼ 920. The relation (29) is plotted in Fig. 6.
Apart from the rotation-induced modifications to the

f-mode frequency ωf, rotation will induce a correction δQf

to the tidal overlap integral Qf. This term, however, is of
quadratic order to νs;⋆ [83–85], and is typically δQf ≲
10−3Qf even for the fastest rotating NS in a binary
observed to date, viz. PSR J0737-3039A, whose dimen-
sionless spin is χ ≲ 0.05 (∼44 Hz [86]). However, the
secondary of GW190814 has a finite chance to set a new
record with χ ∼ 0.47 (∼1170 Hz [43]; see also below). In
the latter system, a correction of δQf ≳ 0.2Qf is expected.
However, we will not explore this interesting case in the
present article, and we will base our estimations on the tidal
overlap integral for nonrotating stars.

D. Statistical error

The phase of the (frequency-domain) GW waveform is
particularly crucial in estimating parameters in the match-
ing filter algorithm [3,39,87], which we summarize in the
following.
Defining a sensitivity-curve-weighted inner product in

the waveform space as

ðgjhÞ ¼ 2

Z
∞

0

g�ðfÞhðfÞ þ hðfÞ�gðfÞ
SnðfÞ

df; ð30Þ

for two frequency-domain waveforms f and g, the SNR can
then be express as
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FIG. 6. Tidal dephasing as a universal function of the dimen-
sionless, normalized spin defined in Eq. (28). Here we denote
M1.4 ¼ M⋆=1.4 M⊙ and R12 ¼ R⋆=12 km.
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FIG. 5. Top panel: evolution of GW phase for various spin rates
of the primary, νs;⋆, as functions of fgw for a particular binary (we
assumed the MPA1 EOS). Bottom panel: accumulated phase shift
ΔΨT due to tidal effects in both NSs as a function of νs;⋆, here we
used the same EOS as in Fig. 4. For both panels, we consider the
tidal effect of the primary in symmetric binaries with a fixed tidal
deformability Λ̃ ¼ 920.
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ρ2½h� ¼ ðhjhÞ ¼ 4

Z
∞

0

jhðfÞj2
SnðfÞ

df ¼ 4A2

Z
∞

0

f−7=3

SnðfÞ
df;

ð31Þ

where h is the input waveform template, and the latter
equality holds if SPA (1) has been adopted. Here SnðfÞ is
the sensitivity curve set by the detector, and the superscript
asterisk denotes complex conjugate.
As any measurement comes along with errors, we have

to handle the posterior possibility of getting a somewhat
different set of parameters θ, which deviates from the true
parameters θo, by a minute inaccuracy Δθo for a given
signal s, i.e., pðθjsÞ must be under control. For a large
SNR, the approximation for the posterior possibility,

pðθjsÞ ∝ exp

�
−
1

2
ΓabΔθaΔθb

�
; ð32Þ

exhibits a Gaussian distribution around θo [3,4], which is
characterized by the Fisher information matrix

Γab ¼
�
∂h
∂θa

���� ∂h
∂θb

�
: ð33Þ

The measurement error of θa is then defined as

σa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þaa

q
; ð34Þ

where Γ−1 is the inverse of the Fisher matrix.
Neglecting explicitly spin-related terms, which is appro-

priate when the spin is well constrained (see discussion) or
rather small2 [6], we have the symbolic expression

h ¼ hðfgw;A; f0to;ϕo;M; η; Λ̃;ωfÞ ð35Þ

focusing on the explicit dependencies. Here f0 is the
frequency at the minimum of the sensitivity curve, and
we recall that to and ϕo are the reference time and phase
often set as the values at the merger [defined in Eq. (2)].
Although the Fisher matrix is seven dimensional, we can
suppress one of its dimensions by factoring out the
elements related to A since the amplitude is uncorrelated
with the other quantities involved in the inner product
Eq. (30) in SPA.
For the measurement of M and η, it has been demon-

strated in [6] that 2 PN order approximants for point-mass
waveform suffice the purpose of estimating errors in tidal
parameters. For later convenience, we provide the deriva-
tives [cf. Eq. (3.10) of [4]]

∂ ln hpp
∂ðf0tÞ

¼ 2πiðfgw=f0Þ; ð36aÞ

∂ ln hpp
∂ϕo

¼ −i; ð36bÞ

∂ ln hpp
∂ lnM

¼ −
5i
128

ðπMfgwÞ−5=3
�
1þ

�
743

252
þ 11

3
η

�
x −

32π

5
x3=2 þ

�
3058673

508032
þ 5429

504
ηþ 617

72
η2
�
x2
�
; ð36cÞ

and

∂ ln hpp
∂ ln η

¼ −
i
96

ðπMfgwÞ−5=3
��

743

168
−
33

4
η

�
x −

108

5
πx3=2 þ

�
3058673

56448
−
5429

224
η −

5553

48
η2
�
x2
�

ð36dÞ

for the point-mass approximants. We will approxi-
mate the variance of the strain (35) with infinitesimal
changes of non-tidal parameters by the point-mass for-
mulas (36), i.e.,

∂h
∂X

≃
∂hpp
∂X

ð37Þ

for X ¼ ff0t;ϕo; lnM; ln ηg. On the other hand, we
numerically evaluate ∂h

∂Λ̃ by first constructing two wave-

forms with slightly different tidal deformabilities Λ̃� ϵ,
while fixing other parameters, then dividing the difference
of the two waveforms by the difference in Λ̃, viz.

∂h

∂Λ̃
¼ hðΛ̃þ ϵÞ − hðΛ̃ − ϵÞ

2ϵ
: ð38Þ

The scheme admits that the variation of hðΛÞ does not feel
the variance of the others (even though via the inversion

2As of the time this article is prepared, the known,
fastest spinning NS in binaries is PSR J0737-3039A, whose
dimensionless spin, though depending on the EOS, is estimated
to be ≲0.03 [6].
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of the Fisher matrix there is some mixing). The same
procedure is performed for the parameter ωf to obtain
∂h=∂ωf. Measurement errors, (34), can then be calculated
by inverting the Fisher matrix (33).
Adopting the sensitivity curve of aLIGO and assuming

that the data streams are measured across the frequency
band 20 ≤ fgw ≤ 103 Hz with a SNR ρ ¼ 25, we estimate
the errors ΔM=M, Δη=η, ΔΛ̃=Λ̃, and Δωf=ωf in Table I.
We see that the magnitude of tidal phase shift ΔΨT

increases with stellar spin due to earlier excitation of
f-mode, allowing for a more accurate extraction of tidal
parameters. In particular, the error in Λ̃ and ωf reduce
rapidly for increasing spin, where the error can be< 1% for
the former and < 15% for the latter if the NS spins at
800 Hz. The improvement in the measurability of both Λ̃
and ωf is due to the earlier excitation of the f-mode whose
frequency was shifted by the rotation. An earlier mode
excitation increases significantly the transfer of orbital
energy to stellar oscillations affecting significantly the
dephasing. As a result, f-mode frequency will be estimated
with significantly smaller error. Actually, even though the

dephasing due to the equilibrium tide is not directly
affected, the increasing influence of the dynamical tides
encodes certain information of the equilibrium tides since
the latter is the adiabatic limit of the former—notice that Λ
factors out in ΔΨdyn⋆ in Eq. (17). Therefore, by including
the dynamical tides in the Fisher analysis for Λ̃ we
effectively place extra emphasis on the high-frequency
part of waveform.
For the considered data stream, the tidal dephasing ΔΨT

is larger than the uncertainty of phase Δϕo even for a
nonspinning star. However, the tidal dephasing may be
hidden in the uncertainty in phaseΔϕo for a lower cutoff. In
general, tidal dephasing is a function of νs;⋆ and fmax [i.e.,
ΔΨT ¼ ΔΨTðνs;⋆; fmaxÞ], while the uncertainty in phase is
a function of SNR and fmax [i.e., Δϕo ¼ Δϕoðρ; fmaxÞ].
For a particular binary with the spin of the primary being
νs;⋆ ¼ 45 Hz and the SNR of the associated waveform
being ρ ¼ 25, we integrate Eqs. (26) and (30) from fgw ¼
20 Hz to a varying cutoff fmax. We plot Δϕo and ΔΨT as
functions of fmax in the top panel of Fig. 7. In this example,
the tidal dephasing becomes noticeable if the cutoff is

TABLE I. Statistical estimation of the measurement error for the accumulated tidal dephasing ΔΨT [Eq. (26)] (third column), the GW
phase Δϕo (fourth column), the chirp mass ΔM=M (fifth column), the symmetric mass ratio Δη=η (sixth column), the mutual tidal
deformability ΔΛ̃=Λ̃ (seventh column), and the frequency of the f-mode in the primary Δωf=ωf (eighth column) assuming the cutoff as
fmax ¼ 103 Hz. We additionally considered the uncertainty of Λ̃ for fmax ¼ 450 Hz in the final column so as to be compared to the
results in [6], which are shown in the final column of their Table 2, though there the authors adopted ρ ¼ 1 and did not present by
percentage. We consider symmetric binaries with Λ̃ ¼ 920 for several EOS listed in the first column. We use four representative spin
rates (given in Hz): 0 (nonspinning), 45 (fastest known NS in binaries), 500 (moderate fast), and 800 (rather fast) of the primary. In
general, the errors scale as 1=ρ, while the results derived assuming an SNR value of ρ ¼ 25. The table are prepared by considering only
the tidal effects of the primary.

EOS νs;⋆ (Hz) ΔΨT (rad) Δϕo (rad) ΔM=M Δη=η ΔΛ̃=Λ̃ Δωf=ωf ½ΔΛ̃=Λ̃�450
KDE0V 0 −4.4982 1.5231 0.0037% 1.1383% 5.0868% 664.5% 83.67%

45 −4.8299 1.5150 0.0037% 1.1335% 4.4050% 568.3% 73.23%
500 −12.4849 1.6379 0.0038% 1.2128% 0.6339% 74.08% 5.940%
800 −37.3150 1.4969 0.0037% 1.1274% 0.2266% 14.92% 2.080%

APR4 0 −4.5928 1.5220 0.0038% 1.1496% 4.8817% 634.9% 79.62%
45 −4.9372 1.5138 0.0038% 1.1447% 4.2180% 541.5% 69.74%

500 −13.0437 1.4196 0.0037% 1.0886% 0.7189% 70.23% 11.99%
800 −40.4013 1.5165 0.0038% 1.1514% 0.2151% 13.79% 1.777%

SLy 0 −5.0406 1.5218 0.0039% 1.1630% 4.3130% 557.2% 69.71%
45 −5.4287 1.5137 0.0039% 1.1581% 3.7168% 473.6% 60.76%

500 −14.8164 1.4367 0.0038% 1.1124% 0.6322% 60.40% 9.857%
800 −48.2919 1.5813 0.0040% 1.2057% 0.1956% 12.18% 1.300%

ENG 0 −5.0167 1.5184 0.0042% 1.1828% 4.1548% 531.8% 66.64%
45 −5.4175 1.5110 0.0042% 1.1782% 3.5738% 450.8% 57.58%

500 −15.4857 1.4449 0.0041% 1.1388% 0.5933% 54.78% 8.660%
800 −54.8652 1.6344 0.0044% 1.2623% 0.1858% 10.93% 0.9655%

MPA1 0 −5.3222 1.5179 0.0045% 1.2083% 3.7394% 473.2% 58.69%
45 −5.7651 1.5102 0.0045% 1.2034% 3.2010% 398.6% 49.91%

500 −17.4710 1.2997 0.0042% 1.0679% 0.6222% 17.48% 14.19%
800 −68.6082 1.7409 0.0049% 1.3587% 0.1700% 9.410% 0.6029%
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≳600 Hz. In general setting, there is a minimal SNR ρthr for
a specific spin νo and cutoff fmax;o, defined by the equality

ΔΨTðνo; fmax;oÞ ¼ Δϕoðρthr; fmax;oÞ: ð39Þ

To grasp how the increasing spin improves the detectability
of tidal effects, we find ρthr as a function of the NS spin
assuming some cutoff frequencies for a particular binary in
the bottom panel of Fig. 7. Improvement of measurability is
observed when fmax is extended.

IV. CASE STUDY: GW190814

The event GW190814, reported by the LIGO-Virgo-
Kagra collaboration at a SNR of ρ ¼ 25 [88], consists
of one black hole, weighting 22.2–24.3 M⊙, and a compact
object with 2.50–2.67 M⊙. The mass of the latter
intriguingly falls in the so-called lower mass gap
(2.5–5 M⊙), and may be either the lightest black hole or
the heaviest NS known to date. A possibility that the
secondary is a mass-gap, fast-rotating NS has been raised
in [41–43], with the highest suggested spin being
νs;⋆ ∼ 1170 Hz [43]. Although the spin parameter for this

presumably, rapidly rotating NS has not been well con-
strained, an estimation of the dimensionless spin χ via the
relation [cf. Eq. (3) of [82] ]

χ ≈ 0.4

�
νs;⋆

103 Hz

�
ð40Þ

gives χ ≈ 0.47 for the rate νs;⋆ ∼ 1170 Hz, which is about
65% of maximum spin (χ ∼ 0.7) attainable by an isolated
NS [89]. This peculiar system may originate from a
dynamical process, such as dynamical encounters in a star
cluster [90,91], hierarchical triple system [92], and tidal
capture [93] of a natal NS kicked off from its born site
by a black hole (BH).
Compared to the other tidal contributions, dephasing

due to spin effects is secondary. Still, it seems that the
estimation of spin parameter via its impact on the tidal
dephasing may be promising. In this section, we discuss the
tidally induced phase shift for a fast-spinning NS, and
estimate how can we probe both the f-mode frequency and
the stellar spin rate from the waveform of GW190814 if the
secondary turns out to be a fast-rotating NS.

A. Estimation of source parameters

Adopting the definition of the onset of the merger as
[94], i.e., when πðM⋆ þMcompÞfgw ¼ 0.2, the total mass of
∼27 M⊙ of GW190814 suggests that the merger occurred
at fgw ≲ 360 Hz. In our simulation of the binary having
two constituents with the masses and radii of those for
GW190814, we find the separation between the two bodies
is ∼95 km when fgw ¼ 360 Hz, which is larger than the
sum of the two radii, viz. ∼75 km. We therefore set the
cutoff at fmax ¼ 360 Hz and the “competition” between
ΔΨT and Δϕo is plotted in Fig. 8. We see that the tidal
dephasing in the waveform is exceeding the error of phase
even with this low cutoff since the spin is rather high.
Ignorance of the tidal effect in this case will therefore
deteriorate the extraction of source parameters to an extent
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FIG. 8. Same plot as the top panel of Fig. 7, while the spin of
the primary is νs;⋆ ¼ 800 Hz here. The vertical line marks the
merger frequency 360 Hz.
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FIG. 7. Top panel: Uncertainty in the GW phase Δϕo (blue)
and tidally induced phase shift ΔΨT (red) [Eq. (26)] as functions
of the cutoff frequency fmax. The spin of the primary and the
SNR are set as, respectively, νs;⋆ ¼ 45 Hz and ρ ¼ 25. Bottom
panel: SNR ρthr for the uncertainty in phase Δϕo to equate the
tidal dephasing jΔΨT j [Eq. (39)] for four cutoff frequencies
as functions of νs;⋆. In both panels, the symmetric binary with
Λ̃ ¼ 920 and EOS MPA1 is considered.
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worse than ignoring the uncertainty in the reference
phase ϕo.
Although we show that the inclusion of tidal dephasing

is necessary since the primary spins rapidly, the uncertain-
ties for Λ̃ and ωf are however large for this low fmax.
We investigate the uncertainties of these two parameters
as functions of fmax in a neighborhood of 360 Hz. In
particular, we find the following relations

Δωf

ωf
¼ a1

�
fmax

360 Hz

�
a2
%; ð41aÞ

and

ΔΛ̃
Λ̃

¼ b1

�
fmax

360 Hz

�
b2
%; ð41bÞ

for the chosen EOS and fmax ∈ ½200; 400� Hz, where the
fitting parameters ai and bi are listed in Table II. The b2
parameter is consistent with the trend showed in the Fig. 10
of [53]. For this specific system and fmax ¼ 360 Hz, we
find additionally that the errors in M and η are, respec-
tively, 0.0066%–0.0077% and 2.787%–2.813% depending
on the EOS. Assuming Gaussian priors for the chirp mass
and the symmetric mass ratio centering at the peak of
posterior distribution obtained in [88], i.e., M ¼ 6.09 and
η ¼ 0.112, we plot in Fig. 9 the probability distribution of
our estimated of the masses of two objects, overlapped with
their estimates (red rectangular). Although the estimates
in [88] are made without considering dynamical tides, the
≳6 rads dephasing (cf. Fig. 8), amounting to 0.33% of the
total cycles observed above 20 Hz for GW190814, is not
expected to affect much the inferences on M and η.
However, ignoring f-mode excitation can deteriorate the
estimate of Λ̃, which contributes only ≲1 rad from 20 to
360 Hz to the dephasing in Fig. 8.
Although we assumed the knowledge of the spin in the

above analysis, we note that we may estimate the spin by
exploiting the universality of the tidal dephasing as a
function of the dimensionless spin [Fig. 6; Eq. (29)],

together with the mass measurement and the radius inferred
by Λ̃ in the fashion of [77]. This will be considered
elsewhere since the other spin effects, e.g., spin-orbit,
spin-spin, and self-spin, should also be taken into account,
which is beyond the scope of the present article.
We close the section by pointing out that if the secondary

of GW190814 turns out to be an aligned NS rotating at
800 Hz, the excitation of f-mode may generate a strong
enough strain at ∼0.6 s to crack the stellar surface in the
fashion of [44–46]. Although there is no observation of
electromagnetic counterparts for GW190814, this does not
necessary falsify the possibility that the secondary is a NS.
The absence of electromagnetic signal might be because the
emission is off beam, absorbed by the black hole remnant,
or the surface strength of magnetic field might be weaker
than the critical value. For example, the nondetection of a
precursor for GW170817 gives an upper bound on the
magnetic fields of both NS progenitors of ∼1013.5 G
assuming the resonance of interface mode is responsible
for crustal failure [95].

V. DISCUSSION

The phase of gravitational waveform is sensitive to
several stellar parameters, which elevates it into an invalu-
able position in the GW physics era. Among other factors,
the tidal contribution to the GW phasing encodes the details
of internal motions of NSs, consisting of the equilibrium
tide, described by the tidal deformability (Sec. II A), and
the dynamical, f-mode oscillation, captured by the mode
frequency ωf and its coupling strength to the external tidal
field Qf [Eq. (19)]. The determination of Λ via the phase
shift due to equilibrium tides can set constraints on the
EOS as demonstrated by the analysis of GW170817 [10].

FIG. 9. Posterior distribution of the primary and secondary
source masses for the waveform model that assumes an aligned
spin νs;⋆ ¼ 800 Hz, fmax ¼ 360 Hz, and EOS MPA1. The red
rectangular plots the estimate reported in [88].

TABLE II. Parameters relevant to Eq. (41) for the chosen EOS.
The inertial-frame, spin-modified f-mode frequency is listed in
the second column, and the fitting parameters defined in Eq. (41)
are presented from the third to the final column. Here we assume
νs ;⋆ ¼ 800 Hz.

EOS ωf=2π (Hz) a1 a2 b1 b2

KDE0V 817.57 509.55 −2.46 9.05 −2.34
APR4 789.65 436.70 −2.49 7.86 −2.36
SLy 748.47 321.41 −2.53 5.91 −2.38
ENG 697.92 241.25 −2.60 4.59 −2.42
MPA1 637.01 151.46 −2.70 3.04 −2.47
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However, we need to take also into account the dynamical
tides since more accurate observations will be available in
the near future. This entails a good handle on the QNM
effects on the waveforms especially in the high frequency
window, where the influence of tidal effects in the GW
signal is encoded (top panel of Fig. 5). Ignoring the
dynamical tide contribution in the phase shift will therefore
deteriorate the accuracy in constraining the EOS.
Furthermore, for binaries involving rapidly rotating NSs
the effect will be more pronounced since the f-mode
frequency will be lowered, leading into larger tidal dephas-
ing (Sec. III D).
As we mention earlier, both spin and tidal effects will

influence the GW phasing though the spin contribution is
smaller [96]. Therefore, it is crucial to estimate the phase
shift caused by each one of them for the precise estimation
of the tidal parameters (e.g., [24]). If we can determine
independently the stellar spin through, e.g., the range of
dynamical ejecta [97,98], a shift in the main pulsating mode
in hypermassive NS remnant [99,100], or a system showing
double precursors [101], we can construct a point-particle
waveform for that spin. By subtracting the point-particle part
of the waveform from the data, we can get the tidal
dephasing. In addition, the tidal effects are encoded in the
high frequency part of GW data stream, while the spin
affects mainly the low frequency part [34,102]. Thus we may
acquire the individual spins in the early part of the waveform
by measuring spin-orbit and spin-spin contributions.
Although the latter spin-spin contribution is degenerate with
the self-spin effect as discussed in Introduction, the I-Love-Q
relation can help in breaking the degeneracy since the spin-
induced quadrupole moment can be estimated from the
adiabatic tidal parameter [103,104]. On the other hand, GW
luminosity during inspiral is more sensitive to the tidal
effects than the spin-orbit terms [105]. In particular, the tidal
contribution of the primary to the luminosity reads [5]

LT
GW ¼ 192η2x10ðM⋆ þ 3McompÞM4⋆Λ⋆

5ðM⋆ þMcompÞ5
; ð42Þ

while the spin-orbit contribution is negligible. Therefore, by
correlating the tidal imprints in the phasing and the lumi-
nosity, we may provide more accurate estimation of the tidal
parameters. Nonetheless, we note that the above equation
applies to nonspinning NSs.
In reality, the tidal effect on the members of NS binaries

can be threefold: gravitoelectric, gravitomagnetic tides, and
the change in the waveform shape induced from the gravito-
electric tidal field [106–108]. Our focus in the present article
was on the gravitoelectric tides, while we should keep in
mind that the excitations by the gravitomagnetic tidal field
[75,109] may become comparable to the gravitoelectric
excitations under certain conditions [110]. Although we
do not consider spin contribution in the GW dephasing since
it is minor compared to the dephasing by equilibrium tides
(e.g., [99]), we are aware that the uncertainty in the spin
contribution will affect, to certain extent, the estimation of
the tidal parameters; detailed analysis of tidal dephasing,
where the spin-induced dephasing is included, would be
useful. In addition, during the preparation of this article, a
new study pointing out the importance of tidal-spin inter-
action in the waveform modeling for fast spinning NS with
χ ≳ 0.1 was published [111].
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