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ABSTRACT
During the final stages of a neutron-star binary coalescence, stellar quasi-normal modes can become resonantly excited by tidal
fields. If the strain exerted by the excited modes exceeds the extent to which the crust can respond linearly, localized crustal
failures may occur. In this work, we re-examine resonant g-mode excitations of relativistic neutron stars in the last ∼10 s of
an inspiral. We adopt realistic equations of state that pass constraints from GW170817, include third-order post-Newtonian
terms for the conservation orbital motion, and employ a 2.5 post-Newtonian scheme for gravitational back-reaction. Frequency
modulations of the modes due to tidal fields, Lorentz forces, and (slow) rotation are also considered to investigate the maximal
strain achievable by resonantly excited g modes. Depending on the equation of state, degree of stratification, and stellar magnetic
field, we find that certain g-mode excitations may be able to break the crust some seconds prior to coalescence.

Key words: methods: numerical – binaries: close – stars: magnetic field – stars: neutron – stars: oscillations – stars: rotation.

1 IN T RO D U C T I O N

Tidal effects in compact binary systems containing at least one
neutron star (NS) may be studied by both electromagnetic and
gravitational-wave (GW) measurements (Abbott et al. 2017a,b,c).
Such studies allow one to probe the fundamental properties of the
progenitor NSs, such as the equation of state (EOS; Abbott et al.
2018; Radice et al. 2018). In the final stages of a merger, orbital
energy and stellar internal energy are redistributed efficiently by
tidal force(s) and dissipation. The former excites stellar quasi-normal
modes (QNMs), leading to the transfer of orbital energy into excited
modes, thus leaving certain imprints into the orbit evolution (e.g.
accelerating coalescence and causing shifts in the GW phase by f-
mode excitations Kokkotas & Schafer 1995; Vick & Lai 2019). The
latter, resulting from viscosity, damps the excited modes, turning
kinetic energy into thermal energy, which can heat up the star to ∼108

K before merger (Lai 1994). In particular, when the tidal-perturbing
frequency matches the eigenfrequency of a particular QNM at
some point prior to merging, the mode becomes resonantly excited.
Mode amplitudes increase rapidly during a period of resonance,
possibly straining the crust to the point that quake or fracture
events can occur (Horowitz & Kadau 2009; Baiko & Chugunov
2018). It has been suggested that localised failure events offer a
possible mechanism (Tsang et al. 2012; Suvorov & Kokkotas 2020;
Passamonti, Andersson & Pnigouras 2021) to trigger ‘precursor’
events of short gamma-ray bursts (Troja, Rosswog & Gehrels 2010).

In general, identifying the precise conditions under which crustal
failure can occur is complicated. In addition to the actual physics of
fracturing not being perfectly understood (see section 2.2 of Lander
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& Gourgouliatos 2019, for a discussion), many factors participate
in the straining mechanism, such as: the mass ratio of the binary
(Hinderer et al. 2016; Steinhoff et al. 2016), the structure and strength
of the stellar magnetic field (Nasiri & Sobouti 1989; Suvorov &
Kokkotas 2020), the degree of stellar stratification, which affects
the g-mode spectrum in particular (Xu & Lai 2017; Passamonti
et al. 2021), the rotation rate (Yoshida & Eriguchi 1999; Gaertig
& Kokkotas 2009; Krüger & Kokkotas 2020), and the stellar EOS
that characterizes the internal structure (Lattimer & Prakash 2001;
Zhou & Zhang 2017). Electromagnetic byproducts of crustal failures,
such as precursor events, may therefore deliver useful information
about stellar behaviour in the final stages of coalescing binaries.

Moreover, NSs are compact enough that relativistic effects are not
negligible in these last stage. For instance, QNM eigenfrequencies
can differ from their Newtonian counterparts by �10 per cent (Chan
et al. 2014), which, if unaccounted for, results in errors in the
estimation of parameters that allow for resonances to happen at
certain times. Building on previous studies (Tsang et al. 2012;
Suvorov & Kokkotas 2020; Passamonti et al. 2021), we introduce
a general-relativistic framework in this study that aims to (at least
phenomenonologically) incorporate each of the above elements to
better understand the connection between resonantly excited modes
and crust yielding. This is the first of two papers in a series, where
the framework is detailed. In a forthcoming paper (paper II), the
aforementioned electromagnetic byproducts are examined in detail
and compared with the results obtained herein.
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At the non-rotating level,1 the QNMs of NSs can be generally
resolved into p, f, w, and g modes. Since the (rotating-frame)
frequencies of the stellar g modes, which are QNMs restored by
buoyancy, are typically in the hundreds of Hz (McDermott, van Horn
& Scholl 1983; Finn 1987; McDermott 1990; Xu & Lai 2017), these
modes are generally thought to lie in the sweet spot of the precursor
scenario (that is, they match well with the expected driving frequency
at the time when precursors are observed relative to the main burst; cf.
paper II). We derive empirical relations for EOS- and stratification-
related effects on the g-mode eigenfrequencies. Shifts in the spectra
due to magnetic fields (Section 5.1), tidal fields (Section 5.2), and
rotation (Section 5.3) are also considered. In principle, interface
modes (McDermott et al. 1985; McDermott, van Horn & Hansen
1988; Piro & Bildsten 2005) and shear modes (Schumaker & Thorne
1983; Sotani, Kokkotas & Stergioulas 2007; Vavoulidis, Kokkotas
& Stavridis 2008; Sotani 2016) could potentially be responsible
for precursors as well (Passamonti et al. 2021). However, the stars
considered here have neither phase transitions that result in density
jumps inside the star, nor a solid crust separated from the fluid core,
hence those modes are absent.

This paper is organized as follows. We write down the equations of
stellar structure relevant for the EOS considered here (Section 2.1).
Numerical details concerning the calculation of QNMs, with a
specific focus on the g modes, is also given (Section 2.2). The
orbital dynamics and relevant assumptions concerning the binary
itself are given in Section 3. Magnetic fields with hybrid structure on
a relativistic star is derived in Section 4. In Section 5 we study mode
modulations by tidal, magnetic, and centrifugal forces and the strain
generated by excited modes is investigated in Section 6. A discussion
is offered in Section 7.

Except where stated otherwise, quantities are expressed in natural
units with c = G = 1, Greek letters denote four-dimensional space–
time indices with an exception of α, which denotes the quantum
number of eigenmodes, and Latin indices refer to the spatial three
components. We adopt the following notation for compactness
throughout: B15 = B�/(1015G), M1.4 = M/(1.4 M�), and R10 =
R/(10 km), where B� is the characteristic magnetic field strength
that will be introduced in Section 4.1.

2 ST ELLAR STRUCTURE

We consider a static, spherically symmetric line element ,

ds2 = −e2�(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θ2dφ2), (1)

where (t, r, θ , φ) are the usual Schwarzschild coordinates, and � and
λ are functions of r only. The Einstein equations

Gμν = 8πTμν, (2)

for the stress-energy tensor associated with a single, perfect fluid,

T μν = (ρ + p) uμuν + pgμν, (3)

describe the structure of a static, non-rotating star. Here ρ is the
energy-density, p is the stellar pressure, gμν is the metric tensor
defined in (1), and uμ = e−�δ

μ
0 ∂t is the four-velocity of a generic

1Because mature NSs as part of binary systems are expected to be slowly
rotating (Bildsten & Cutler 1992; Kochanek 1992), the inertial- and rotating-
frame frequencies of the modes roughly coincide. For rapidly rotating
stars however, r- and even f-mode frequencies can be comparable with the
frequency of tidal driving ∼seconds before merger (Pnigouras 2019; Suvorov
& Kokkotas 2020); see Section 5.3 for a discussion on rotational corrections.

fluid element (rotational corrections to the stellar structure are
considered in Section 5.3). The metric function λ is related to the
mass distribution function m(r), which yields the mass inside the
circumferential radius r, through

e−2λ = 1 − 2m(r)

r
. (4)

The conservation law,

0 = ∇μTμν, (5)

relates the functions ρ(r), and p(r) to the metric variables, and forms
the following system

d�

dr
= 1

p(r) + ρ(r)

dp

dr
, (6a)

dm

dr
= 4πr2ρ(r), (6b)

and

dp

dr
= − [ρ(r) + p(r)]

[
m(r) + 4πr3p(r)

]
r2

[
1 − 2m(r)

r

] . (6c)

The star’s radius R� and mass M� are defined by the boundary
conditions p(R�) = 0 and m(R�) = M�, respectively. Outside of the
star, where p = ρ = 0, the metric (1) reduces to the Schwarzschild
metric of mass M�.

2.1 Equation of state

We consider piecewise-polytropic approximations (Read et al. 2009)
to three different realistic EOS, namely the APR4, SLy, and WFF
families. We choose these models because they are sufficiently soft to
be compatible with the tidal deformability measured in GW170817
(Abbott et al. 2018). The aforementioned EOS are all barotropic
[i.e. p = p(ρ)], which is a reasonable approximation for mature
systems older than the relevant electroweak and diffusion time-scales
(Mastrano, Suvorov & Melatos 2015) where thermal fluxes are likely
to be negligible, and the buoyancy comes primarily from composition
gradients inside the star. Note, however, that tidal heating is expected
to be able to raise the temperature of the (still relatively cold) NS
crust to ∼108 K prior to merger (Lai 1994). Thermal gradients
may therefore become important at late times (Bauswein, Janka &
Oechslin 2010).

While each EOS considered here assumes that the stars consist of
npeμ nuclear matter, the many-body problem is handled differently:

(i) WFF families are obtained using variational methods applied
to nucleon Hamiltonians, that contain pieces of two-body and three-
body interactions. More precisely, different two- and three-nucleon
potentials are used to model the bulk matter (see Wiringa, Fiks &
Fabrocini 1988 for details).

(ii) SLy is derived from the Skyrme effective nucleon–nucleon
interaction (Douchin & Haensel 2001), consistent with WFF2 in the
regime where the baryon density exceeds the nuclear value n0 = 0.16
fm−3.

(iii) APR4 is derived by variational chain summation methods
(Akmal, Pandharipande & Ravenhall 1998) adopting a two-nucleon
interaction (Wiringa, Stoks & Schiavilla 1995) that accounts for
Lorentz boost corrections not used in WFF1.

Masses M� of the stars constructed with these EOS, as functions
of central density, are shown in the upper panel of Fig. 1. The
intersections of each curves with the dashed lines (both green and
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Figure 1. Mass of non-rotating equilibrium models constructed with various
EOSs surviving the constraints of GW170817 (APR4, SLy, WFF1-3) as
functions of central density (top panel) and stellar radius (bottom panel). We
choose several models for each EOS to be studied. These models include
those represented by the intersection of each EOS curve with the grey dashed
lines, and those having masses of 1.4 M� (the intersection of each EOS curve
with the green dashed line).

grey) mark the models that we choose for later analysis. The mass–
density relations [bottom panel of Fig. 1] tells us that the SLy EOS
is the stiffest one and the WFF1 is the softest one.

2.2 g modes

Oscillatory patterns of motion in a star can be resolved into QNMs
with complex eigenfrequency ωα , where α denotes the ensemble of
quantum numbers α = (nlm) for overtone number n, and spherical
harmonic indices l and m. The oscillating frequency is the real part
of ωα , while the reciprocal of the imaginary part defines the damping
rate due to radiation-reaction. In general, QNMs are categorized
according to the nature of the restoring force. For example, p modes
are supported by pressure, while g modes are supported by buoyancy.
We focus on g modes in this work because they are more likely to
become resonant in the last ∼10 s of inspirals for slowly-rotating
NSNS mergers (though see footnote 1) since their (fundamental)
frequencies are typically smaller than a few hundred Hz (Lai 1994;
Kokkotas & Schafer 1995; Kantor & Gusakov 2014; Andersson &
Ho 2018).

Inhomogeneities in composition and/or temperature give rise to
stellar stratification and buoyancy as gravity tends to smooth out
these gradients (McDermott et al. 1983; Finn 1987; Strohmayer 1991;

Reisenegger & Goldreich 1992). Explicitly, stratification prevents the
Schwarzschild discriminant,

A := e−λ dp

dr

1

p

(
1

γ
− 1



)
, (7)

from vanishing, where

γ = ρ + p

p

dp

dρ
, (8)

is the adiabatic index associated with the equilibrium star described
in Section 2. The parameter  represents the adiabatic index of the
perturbation, which need not match that of the background for non-
isentropic perturbations (Lockitch, Andersson & Friedman 2001).
Aiming to provide a proof-of-principle framework in this work,
we introduce a phenomenological parameter δ that encapsulates the
departure from isentropicity through

 = γ (1 + δ). (9)

In principle, one could determine δ from first principles by calculating
the sound speed and the determinant of the Brunt-Väisälä frequency
from the nuclear Hamiltonian together with the Gibbs equation
describing the evolution of the chemical composition (Reisenegger
& Goldreich 1992; Lai 1994). However, here we approximate the
EOS as barotropic, i.e. p = p(ρ), which erases the compositional
information in practice. The composition gradient, which offers
buoyancy for g modes, is therefore, strictly speaking, absent. The
artificial parameter  is used as a proxy for perturbation-induced
changes in the chemical potentials resulting from a non-adiabatic
perturbation. In addition, as shown by Reisenegger (2001), NSs are
in general stably stratified due to the interior equilibrium composition
gradient, implying A < 0 inside the star (i.e. γ < ). We thus consider
positive δ hereafter.

The numerical calculation of the complex g-mode frequencies
is known to be difficult because |Im(ωα)| � |Re(ωα)|, meaning
that high precision is necessary to prevent errors in the real parts
contaminating the imaginary parts, as discussed by Finn (1986).
Searching for low-frequency g modes and their respective eigen-
functions entails a delicate separation of the ingoing- and outgoing-
waves at spatial infinity, so that one can impose the purely outgoing
boundary condition.2 Techniques based on phase integrals have been
proven to be adequate for this purpose (Andersson, Kokkotas &
Schutz 1995). On top of that, the minute displacements of g modes,
which is translated from eigenfunctions, make the differential system
of the eigenproblem put forward by Lindblom & Detweiler (1983)
and Detweiler & Lindblom (1985) inappropriate for solving g modes.
The issue for these long-lived modes (due to their small imaginary
components) has been addressed in Krüger, Ho & Andersson (2015)
by solving a slightly different set of differential equations (see
also Finn 1986). In this work we adopt the combined algorithm
of Andersson et al. (1995) and Krüger et al. (2015) to compute g
modes. Our code is capable of determining the real parts of mode
frequencies to within a tolerance of ∼10 Hz. Shown in Fig. 2 are the
radial displacement ξ r for the first five g modes of a particular star.

There is a universal relation for the frequencies of f modes over a
plethora of EOS for non-rotating NSs (Andersson & Kokkotas 1998)
and for (rapidly-)rotating NSs (Krüger & Kokkotas 2020), which
can be used to infer the eigenfrequencies of f modes by the mean

2Solutions to the perturbation equations include those of purely ingoing- and
outgoing-waves, and even the hybrid waves. However, only those pulsate
energy outward, i.e. purely outgoing ones, are physically realized (Price &
Thorne 1969).
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Figure 2. Normalized radial displacement ξ r for the n = 1 − 5, l = 2, g
modes of the star with EOS SLy, M� = 1.27 M�, and δ = 0.005.

Table 1. Fitting index ς , defined in equation (10), for leading-order
g-mode frequencies as a function of δ.

EOS APR4 SLy WFF1 WFF2 WFF3

ς 0.231 0.378 0.148 0.212 0.465

density of the background star and vice versa (Andersson & Kokkotas
1996; Lau, Leung & Lin 2010; Völkel, Krüger & Kokkotas 2021).
Similar relations have been found for other modes also (Andersson
& Kokkotas 1998; Kokkotas, Apostolatos & Andersson 2001; Tsui
& Leung 2005). In particular, though restricted to polytropic EOS,
Xu & Lai (2017) found universal relations between the frequencies
of l = 2, g1 modes, and the strength of stratification (i.e. δ in our
notation). Similar to Xu & Lai (2017), we find that the real parts of
the eigenfrequencies are well described, as a function of δ, by

Re[ωg1 ] ∝
(

Mς

R1+ς

)√
δ, (10)

where the fitting constants ς for each EOS are listed in Table 1. For
the polytropic EOS studied in Xu & Lai (2017), the corresponding
constant is ς = 0.5 – it is lower for realistic EOS.

3 BINARY EVO LUTION

We consider a close NSNS binary system with constituent masses M�

and Mcomp for the primary and companion, respectively. The orbit is
assumed to lie on the equatorial plane.3 Each star perceives the other
as a point mass to leading order, and thus we treat the companion
as a point mass in the evolutionary code.4 The relevant Hamiltonian
consists of four parts (Alexander 1987; Kokkotas & Schafer 1995):

(i) The conservative orbital dynamics, for which we include up to
third-order post-Newtonian (PN) corrections via the effective one-
body formalism (since the equations are lengthy, we refer the reader
to equation (4.28) of Damour, Jaranowski & Schäfer 2000; see also
Buonanno & Damour 1999).

3In close binaries, tidal interaction aligns the stellar spins with the orbital
angular momentum rapidly (Hut 1981; Zahn 2008). Therefore, it is most
likely that stellar spins are almost aligned with the orbital one in the late stage
of inspiralling.
4Higher order and finite-size effects have been looked at through the second-
order gravitational self-force method (Pound 2012) and, independently, by
post-Newtonian theory (Bini, Damour & Faye 2012), where the leading
correction comes beyond 5 PN.

(ii) Leading order GW dissipation of respective equatorial mo-
tions, which first appear at 2.5 PN order, is encapsulated by (Schaefer
1990)

Hreact = 2

5

(
pipj − M2

� M2
comp

M� + Mcomp

xixj

a3

)
d3

dt3

[
xixj − a2

3
δij

]
, (11)

where xi = (acos φ, asin φ) for i = 1, 2 denote the spatial coordinates
of the companion (note the lack of dependence on θ because we
consider equatorial motion), pi are the associated momenta, and a is
the distance between the companion and the centre of the primary
(r = 0).

(iii) The gravitational energy that the primary absorbs via the tidal
field,

Htid =
∫

primary
�Tδρ(x, t)

√−gd3x, (12)

where �T denotes the tidal potential as experienced by the primary,
δρ is the physical variation in density, and the integral is taken over
the volume of the primary. We note that the tidal potential �T is
not to be confused with the metric function �(r). In true general
relativity, the tidal potential �T (which is promoted to a tensor) has
both electric and magnetic components (Landry & Poisson 2015;
Poisson & Douçot 2017; Poisson 2020) (see also Ferrari, Gualtieri &
Maselli 2012; Vines & Flanagan 2013; Steinhoff et al. 2016, for the
formalism of 1 PN interaction). However, the PN tidal response of
NSs and the influence on the orbit evolution are insignificant except
only the last few seconds of the insprial (	100 Hz). Therefore,
we will neglect the PN tidal interaction and consider a Newtonian
approximation here. As such, �T admits a multipole expansion of
the form (Press & Teukolsky 1977; see also Zahn 1977, for the case
of eccentric binaries)

�T = −Mcomp

a

[
1 +

∑
l=2

( r

a

)l

P l
0

(
cos φ̃ sin θ

)]
, (13)

which depends on the difference φ̃ = φ − φc between φ and the
angular position of the secondary star, φc, as measured from the
perihelion of the orbit. In general, one needs to sum over the
multipolar components of �T to complete the tidal Hamiltonian,
though we specialize our attention to the l = m = 2 component of
�T, which is the leading order term of the potential most relevant
for tidally-forced oscillations (Zahn 1977; Willems 2003). The tidal
force associated with this component perturbs the primary with
frequency two times the orbital frequency, 2�orb. In addition, δρ(x, t)
is induced by the small-amplitude motion ξ on the star,

ξ (x, t) =
∑

α

qα(t)ξα(x, t), (14)

which we have decomposed into modes ξα with amplitude qα (see
Section 3.1 for details). Each ξα , having time dependence eiωα t , is a
solution to the eigenproblem ,

Vξα = ω2
αT ξα, (15)

whereV and T are appropriate potential and kinetic operators (Fuller
et al. 2020). The detailed form of these potentials is crucial as
one attempts to identify the impact of any perturbing forces in the
problem, but is not important in building up the Hamiltonian itself,
so we postpone their explicit definition until Section 5.2.

(iv) Pulsations on the primary, which are described by a harmonic-
oscillators-type Hamiltonian ,

Hosc = 1

2

∑
α

(
pαp̄α

M�R2
�

+ M�R
2
�ω

2
αqαq̄α

)
+ H.c., (16)
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which is normalized according to∫
primary

√−gd3xe−2�(ρ + p)(ξα)μ(ξ̄α′ )μ = M�R
2
� δαα′ (17)

for each QNM eigenfunction.5 Here pα are the canonical momenta
associated with qα , and the overhead bar denotes complex conjuga-
tion. Note that the momenta with Latin index are spatial ones, while
those labelled by α are for pulsations. The Hermitian conjugate
in equation (16) comes from the dual appearance of modes with
eigenfrequency −ω̄ (see Section 3.1 for details). However, these are
not the classic oscillators in the sense that dissipation rate of QNMs is
not determined solely by the imaginary part of the eigenfrequencies,
since the eigenfunctions are not real.

In summary, we work with the Hamiltonian,

H (t) = (Horb + Hreac + Hosc + Htid)(t). (18)

The orbital dynamics are then determined by numerically solving
Hamilton’s equations,

dpα

dt
= −∂H (t)

∂qα

,
dqα

dt
= ∂H (t)

∂pα

, (19a)

dp̄α

dt
= −∂H (t)

∂q̄α

,
dq̄α

dt
= ∂H (t)

∂p̄α

, (19b)

and

dpi

dt
= −∂H (t)

∂xi

,
dxi

dt
= ∂H (t)

∂pi

, (19c)

where we recall that xi and pi are defined in the sentence below
equation (11).

The evolution is carried out up to the point that the orbital
instability kicks in, which happens at a � 3q1/3R� (Lai, Rasio &
Shapiro 1993), where q is the mass ratio Mcomp/M of the binary.
Although this point need not coincide with the separation where
NSs merge, the difference is small (Lai, Rasio & Shapiro 1994b)
and we effectively assume that mergers occur at a � 3q1/3R� (Lai,
Rasio & Shapiro 1994a; Ho & Lai 1999; Suvorov & Kokkotas
2020).

3.1 Tidal resonances

For a spherically-symmetric (equilibrium) star, the components of
the eigenfunction ξα can be expressed in terms of radial (Wnl) and
tangential (Vnl) components, viz.

ξ r
α = rl−1e−λWnl(r)Ylmeiωαt ,

ξ θ
α = −rl−2Vnl(r)∂θYlmeiωα t ,

ξφ
α = −rl(r sin θ )−2Vnl(r)∂φYlmeiωα t , (20)

and ξ t
α = 0 (Thorne & Campolattaro 1967; Lindblom & Detweiler

1983; Detweiler & Lindblom 1985). In addition, the metric perturbed

5Eigenfunctions of QNMs, ξμ
α , in GR are not strictly orthogonal to each other

for the coupling between the material motion to the gravitational radiation
field, which extends to infinity, destroys the self-adjointness of the eigenvalue
problem by a non-vanishing surface integral term from the perturbations in the
space–time (see, e.g. equation 2.4 in Friedman & Schutz 1975; for the Cowling
approximation case, see the last two terms of equation (16) in Detweiler &
Ipser 1973). None the less, that term is small for g modes, whose dissipation
time-scales are extremely long. The omission of the surface integral term
hence justifies the implementation of the normalization (17), which looks
similar to the Newtonian case used in, e.g. Tsang et al. (2012).

by (even parity) QNMs can be expressed in the Regge–Wheeler
gauge6 as

ds2 = ds2
eq − e2�rlH 0

nlYlmeiωα tdt2 − 2iωαr
l+1H 1

nlYlmeiωα tdtdr

− e2λrlH 0
nlYlmeiωα tdr2 − rl+2KnlYlmeiωα td�2, (21)

where ds2
eq is the line element of the equilibrium (1), and H 0

nl , H 1
nl ,

and Knl characterize the metric perturbations.
Two modes whose eigenfrequencies have real parts with opposite

sign but share the same imaginary parts appear in pairs (Andersson &
Kokkotas 1998), and their eigenfunctions are complex conjugate to
each other. The normalization (17) is satisfied for these dual modes;
thus, the Hermitian conjugate part in equation (16) attributes to
them. The change in the (Eulerian) density induced by pulsations
is therefore

δρ(x, t) =
∑

α

δρ(x, ωα)eiωα t + H.c., (22)

where the contribution of a particular mode, accompanying a Her-
mitian conjugate term due to the dual mode, is

δρ(x, ωα) = qα

[
− e−�∇i

(
(ρ + p)e�ξ i

αe−iωα t
)

+
(

H 0
nl

2
+ Knl

)
(ρ + p)Ylm

]
, (23)

to first order in the perturbation terms (cf. equation 8a in Detweiler &
Ipser 1973). The boldface symbol denotes the spatial part of a four-
vector and the divergence is taken with respect to the three-geometry
of the metric (21) at a constant time t. The physical perturbation in
density induced by a pair of modes reads

δρ(x, t) = 2Re[δρ(x, ω)]. (24)

We use the complex conjugate δρ in the bracket to maintain coherence
with later use. The factor of 2 comes from the fact that the modes
appear in pairs with frequency of ω and −ω̄.

Substituting δρ and integrating by parts, the tidal Hamiltonian can
be expressed as

Htid = 2
∫

primary

√−gd3x(ρ + p)Re
[
δρ(x, ω)�T

]

=
∫

primary

√−gd3x(ρ + p)Re
[(

H̄ 0
nl + 2K̄nl

)
Ȳlm�T

]

− 2M�Mcomp

aR�

∑
α

Wlm

(
R�

a

)l

Re[q̄αQαe−imφc ], (25)

containing a term resulting from the space–time distortion, which
does not have a Newtonian analogy. In equation (25), Wlm is given
by

Wlm = (−)(l+m)/2

[
4π

2l + 1
(l + m)!(l − m)!

]1/2

×
[

2l

(
l + m

2

)
!

(
l − m

2

)
!

]−1

, (26)

6Strictly speaking, this gauge assumes a fixed (l, m) and mode parity
(cf. equations A9 and A11 in Thorne & Campolattaro 1967), and so
performing a summation, as we do in (14), is actually mixing gauges in
a formally incorrect way. Fortunately, Price & Thorne (1969) have shown
that one can simply superpose the QNMs using whatever gauge for each one.
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2990 H.-J. Kuan, A. G. Suvorov and K. D. Kokkotas

where (−)k = (− 1)k if k is an integer, but equals zero otherwise. The
relativistic ‘overlap integral’, defined as (Press & Teukolsky 1977)

Qnl = 1

M�Rl
�

∫
primary

√−gd3x(ρ + p)ξ̄ μ
nll∇μ(rlYll), (27)

is a complex, dimensionless number that measures the tidal coupling
strength of the mode. The tidal overlap integral for the predominant
effects (l = m = 2 component of �T) reads7

Qn2 = 1
M�R

2
�

∫
primary e�+λ(ρ + p)ξ̄ μ

n22∇μ(r2Y22)r2d3x. (28)

For a binary system, the tidal force has the frequency of 2�orb

(Zahn 1977), thus pulsation modes, with eigenfrequencies ωα ,
would be brought into resonance when �orb falls in the interval
[((1 − ε)/2)ωα, ((1 + ε)/2)ωα] (Lai 1994). In our numerical results,
we find that the definition

ε = 10

√
2π

�orb

|ȧ|
a

(29)

is adequate for determining the onset and the end of resonance (see
Fig. 4), which, in turn, yields the resonance duration tres ≈ εRe(ωα).
On the other hand, the tidal field shifts the eigenfrequencies by (see
also Section 5.2)

δωT
α = Qn2

2ωαa3
Mcomp, (30)

where ωα is the unperturbed eigenfrequency. This indicates that
the true eigenfrequencies – which include a shift due to the tidal
field – must be solved for simultaneously with the orbital evolution
equations, since equation (30) depends on the (time-dependent)
orbital separation a. In fact, any perturbing force will shift the
pulsation spectrum because the kinetic and potential operators V and
T defined in equation (15) are adjusted accordingly. In Section 5, we
show how the Coriolis and Lorentz forces associated with a rotating
and magnetized star may influence the spectrum.

The numerical scheme for evolving the modes of the primary is
summarized in Fig. 3. We begin by evolving the binary with an initial
separation of

a(0) = 2 3

√
M� + Mcomp(

Re[ωα]
)2 . (31)

The initial (non-resonant) mode amplitude is assumed to be zero. In
Fig. 4 we show the mode amplitude for the l = m = 2, g1 mode for a
star with SLy EOS as a member of an equal-mass (q = 1) binary as
a function of time. The resonance starts at orbital frequency νorb =
�orb/2π = 43.89 Hz (green point) and ends at 45.69 Hz (light green
point) with duration of 0.29 s. The mode oscillates with amplitude
q ≈ 2.4 × 10−4 after resonance, though these oscillations decay
exponentially as merger is reached.

We performed simulations for equal-mass binaries assuming the
EOS APR4, SLy, and WFF1-3. We find that the maximal amplitudes
of g1 modes of the primary obey the following approximate relations
:

qα,max(ωαM�)5/6 � (0.1092 ± 0.0208)Q12, (32)

where the error is given by 1σ confidence level of least-squares
fitting. The analytic equation of the maximum mode amplitude under

7Note that this expression differs from that used by Yoshida & Eriguchi
(1999). These latter authors ignored the pressure contribution in addition to
the inertial mass in their expression.

Qα

δωT qα

a ȧ

(30)

(25)

(16)

(19c)(30)
(25)

Δt

Figure 3. The numerical scheme used in this paper to evolve the modes of the
primary. The only time-independent quantities are the tidal overlap integrals
Qα on the upper right, while the rest are iteratively solved for. Starting from
the separation a(t), the strength of tidal field by the companion of a specific
binary is decided and gives rise to certain shift in eigenfrequencies of QNMs
(equation 30), which depends also on the tidal coupling strength of each QNM
Qα . Consequently, total eigenfrequencies ωα + δωT

α fixes the Hamiltonian of
QNMs (equation 16), which is solved to update mode amplitudes. Next, the
change rate of the separation ȧ is influenced by the amplitude of excited
pulsations and the tidal coupling strength Qα , and infers the separation at the
next moment a(t + �t) for the time-step �t. Then the cycle runs again until
a � 3R� (Ho & Lai 1999; Suvorov & Kokkotas 2020). Each arrow stands for
a deduction via the relation labelled beside it.
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Figure 4. The amplitude q(e) (blue; left y-axis) of the l = m = 2, g1 mode,
whose unperturbed frequency is 89.25 Hz, and the orbital frequency (red; right
y-axis) as functions of time. The horizontal axis records the time prior to an
equal-mass NS–NS coalescence, which is achieved once the separation decays
to a � 3R� (Ho & Lai 1999; Suvorov & Kokkotas 2020). The yellow and the
purple lines mark the beginning and the end of the resonance, respectively;
the corresponding orbital frequencies are 43.89 and 45.69 Hz, marked by
solid green points. We have taken an equal-mass binary with the SLy EOS
with M� = 1.27 M� = Mcomp and R� = 11.78 km. The radial displacement
ξ r of the first five g modes are shown in Fig. 2.

the stationary phase approximation suggests a slope of π /32 � 0.0982
(cf. equation 6.3 in Lai 1994), which agrees our result to within the
stated confidence level.

Tidal effects accelerate the merger because orbital energy leaks
into the QNMs (Kokkotas & Schafer 1995; Vick & Lai 2019),
especially the f modes, whose coupling strengths are typically a few
tenths. For modes with coupling strengths Q � 0.01, the effects on the
orbital evolution are negligible. In Fig. 5, we present the separation of
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Figure 5. Binary separation with various tidal overlaps as a function of
time. The maximal disagreement between Q = 0.01 and the case without
tidal effect is �0.01 s and is smaller for smaller tidal overlaps. Shaded area,
where a � 3R� (Ho & Lai 1999; Suvorov & Kokkotas 2020), marks the
stage after the merger, which thus is not the virtual evolution. We have taken
M� = 1.4 M� = Mcomp and R� = 10 km; hence, the collapse happens when
the separation is around 30 km. The frequency of the resonant mode is 100 Hz.
This Figure does not use any particular EOS.

an equal-mass binary with M� = 1.4 M� = Mcomp and R� = 10 km
for four different strengths of tidal overlap Q as functions of time,
together with an evolution on which the tidal effects are absent.
As such, one can observe that for Q � 0.01 the tidal effect on the
evolution is quite small. Given that the typical coupling strengths of a
g mode are both much smaller than 0.01, the effect in this case of the
g-mode resonances on the orbital evolution are insignificant relative
to measurement uncertainties in the timing of GWs and gamma-ray-
bursts.

4 MAG N E TO H Y D RO DY NA M I C S

Having explored the effect of the g modes on the orbital evolution,
we now turn to the influence of magnetic fields. In this work, we
treat stars as perfect conductors over which relativistic magnetic
fields are constructed. Perturbed magnetic fields generate Lorentz
forces according to the Faraday induction equation (Section 4.2),
which tunes the eigenfrequencies of QNMs through back-reaction
(Section 5.1). In the event that a crustal yielding occurs on a
magnetized star, the release of fracture energy may generate flares,
such as precursors of short gamma-ray bursts. In general, perturbed
magnetic fields would induce electric fields, accelerating charged
particle and thermalizing the electromagnetic emission; however, if
the magnetic field is strong enough [	1013 G, i.e. magnetar-level
(Duncan & Thompson 1992)], the energy propagates along field lines
as Alfvén waves (Tsang et al. 2012). The non-thermal properties of
precursors thus support the possibility that at least one NS is a highly
magnetized star in those events (Suvorov & Kokkotas 2020). In any
case, timing and the spectral properties of precursor will be examined
in Paper II as an application of the formalism developed here.

4.1 Magnetic field structure

The Viral theorem (Chandrasekhar & Fermi 1953) sets an upper
limit to the magnetic field strength for NSs of the order of ∼1018 G

(Lai 2001; Lattimer & Prakash 2007; Reisenegger 2009). Even for
most magnetars, the (surface dipole) magnetic field strength is much
smaller than this extreme, implying that the gravitational binding
energy exceeds the magnetic energy by several orders of magnitude
(Sotani et al. 2007; Akgün et al. 2013). One may therefore treat
the magnetic field as a perturbation over a spherically symmetric
background profile (1), in the style of Ciolfi et al. (2009) and
Mastrano et al. (2011, 2015).

We introduce the electromagnetic four-potential Aμ, which defines
the Faraday tensor

Fμν = ∇νAμ − ∇μAν, (33)

where each Aμ is a function of r and θ only. Maxwell’s equations for
the electromagnetic field are

Fμν
;ν = 4πJμ, ∇[αFβγ ] = 0, (34)

for four-current Jμ [effectively defined by the first of equations. (34)].
The Lorentz force is then given by F

μ
L = FμνJν . The ideal MHD

condition of vanishing electric field, defined by

Eμ = Fμνu
ν, (35)

for a static and non-rotating star (i.e. uμ = e−�∂ t), returns the
condition At = 0. We have residual gauge freedom, which allows us
to pick Aθ = 0 (Glampedakis & Lasky 2016). Setting Ar = B�eλ − ��

and Aφ = B�ψ , it can be shown that Maxwell’s equations are solved
exactly for (Ciolfi et al. 2009)

�(r, θ ) =
∫

dθζ (ψ)
ψ(r, θ )

sin θ
, (36)

for some ζ , which is an arbitrary function of the stream function ψ

and effictively defines the azimuthal (toroidal) component Bφ , effec-
tively generalizing the Chandrasekhar (Helmholtz) decomposition in
flat space (Chandrasekhar 1956; Mastrano et al. 2011). Here B� sets
the characteristic field strength.

The magnetic four-field has covariant components :

Bμ = 1

2
εμνσηu

νF ση, (37)

where ε denotes the Levi–Civita symbol. Using the above expression
for Aμ, the contravariant components Bμ can be readily evaluated,
and we find

Bμ = B�

(
0,

e−λ

r2 sin θ

∂ψ

∂θ
, − e−λ

r2 sin θ

∂ψ

∂r
, − ζ (ψ)ψe−�

r2 sin2 θ

)
. (38)

The function ψ can now be expanded as a sum of multipoles. For
simplicity, we take a dipole field with polynomial radial component
(which generalizes the Newtonian description in Mastrano et al.
2011), i.e.

ψ(r, θ ) = f (r) sin2 θ, (39)

with f(r) = a1r2 + a2r4 + a3r6, where ai are to be constrained by
appropriate boundary conditions. In particular, we impose that (i) the
field matches to a force-free dipole outside of the star (r > R�), and
(ii) there are no surface-currents (Jμ|r=R�

= 0). This leads to four
constraints, which are that the three components (38) are continuous
at the boundary ∂V of the star, and that the four-current vanishes there
(which only has one non-trivial component, Jφ , for an axisymmetric
field). One of these is trivially satisfied by demanding that ζ vanishes
on the surface, which we achieve, as in Mastrano et al. (2011), by
setting

ζ (ψ)ψ = −
[

Ep (1 − �)

Et�

]1/2 (ψ − ψc)2

R3
�

, (40)
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2992 H.-J. Kuan, A. G. Suvorov and K. D. Kokkotas

when ψ ≥ ψc, and ζ is zero otherwise. Here ψc is the critical value of
the streamfunction, defined as the value of the last poloidal field line
that closes within the star, thus the toroidal component is confined
to the region of closed poloidal field lines. The quantity � measures
the ratio of poloidal and toroidal magnetic energies; typically � �
1 for a stable configuration (Braithwaite 2009; Akgün et al. 2013).
For the above choices, we find

ψc = −3R3
� sin2 θ

8M3
�

[
2M� (M� + R�) + R2

� log

(
1 − 2M�

R�

)]
. (41)

The energy stored in the internal magnetic field of the static
equilibrium is (see, e.g. equation 41 in Ciolfi et al. 2009)

E = 2
∫

primary

√−gd3xuμuνT
μν = 1

4π

∫
primary

√−gd3xB2, (42)

where Tμν is the magnetic stress-energy tensor

T μν = B2

4π

(
uμuν + 1

2
gμν

)
− BμBν

4π
, (43)

with B2 = BμBμ. For the dipolar field (38) considered here, the
poloidal and toroidal energies are

Ep = B2
�

4π

∫
primary

√−gd3x

[(
∂θψ

r2 sin θ

)2

+
(

e−λ∂rψ

r sin θ

)2]
, (44)

and

Et = B2
�

8π

∫
ψ≥ψc

√−gd3x

(
ζ (ψ)ψe−�

r sin θ

)2

, (45)

respectively.
The force-free dipole outside of the star is found by setting F

μ
L = 0

for r > R�. This leads to (Wasserman & Shapiro 1983)

ψext = −3R3
� sin2 θ

8M3
�

[
2M�(r + M�) + r2 log

(
1 − 2M�

r

)]
, (46)

where we note that, outside of the star, the geometry is Schwarzschild,
i.e.

�(r > R�) = 1

2
log

(
1 − 2M

r

)
and λ(r > R�) = −�. (47)

It is not hard to prove (use L‘Hopital’s rule) that, in the limit M� → 0,
ψext reduces to the standard force-free dipole of Newtonian theory,
ψ ∼sin 2θ /r. Finally, imposing the conditions (i) and (ii) discussed
above leads to

a1 = − 3R3
�

8M3
�

[
log

(
1 − 2M�

R�

)

+ M�

(
24M3

� − 9M2
� R� − 6M�R

2
� + 2R3

�

)
R2

� (R� − 2M�)2

]
, (48a)

a2 = 3 (12M� − 7R�)

4R� (R� − 2M�)2 , (48b)

and lastly

a3 = 3 (5R� − 8M�)

8R3
� (R� − 2M�)2 . (48c)

The above therefore completely defines the general-relativistic gen-
eralization of the Mastrano et al. (2011) mixed poloidal-toroidal
field.

The magnetic field introduces a frequency shift in the spectrum of
the star depending on the values B� and �, defining the characteristic
poloidal and toroidal strengths. To better understand the magnetic
field, we transform the contravariant components of four-field Bμ

Figure 6. Field lines for the background magnetic field B with � = 1. The
red rigid line marks the surface of the equilibrium star; the scale is given in
unit of B� for which brighter shades indicate stronger field strength.

into the Newtonian-like components, denoted by a overhead tilde,
through (cf. equation 4.8.5 in Weinberg 1972)

B̃a = √
gaaB

a, (49)

and we show the cross-section in Fig. 6, which is the whole picture
of the magnetic field if the field is purely poloidal.

4.2 Perturbed Lorentz force and Faraday equations

We now study the backreaction on to the magnetic fields induced
by the modes, which results in the frequency modulation 5. In this
section, we ignore the space–time variation of QNMs from magnetic
fields in the perturbation equations (δgmag

μν = 0). Nonetheless we note
that the difference between our approximation and the Cowling
one is that we take the first-order space–time perturbations into
account, viz. space–time perturbations are involved in determining
the mode frequency of the stars, and only the higher order ‘magnetic-
back-reaction’ effects are disposed of. In this sense, our results are
expected to be more accurate than those which adopt the Cowling
approximation.

Following the derivation in Sotani et al. (2007) (see also Pa-
padopoulos & Esposito 1982), the projection of the equation of
motion on to the hypersurface orthogonal to uμ,

hμ
η ∇νT

ην = 0, (50)

gives(
ρ + p + B2

4π

)
uν∇νu

μ = −hμν∇ν

(
p + B2

8π

)

+hμ
η ∇ν

(
BηBν

4π

)
,

(51)

where the projection operator hμν = gμν + uμuν . The Lagrangian
four-displacement ξμ is related to the perturbed velocity through the
Lie derivative (see, e.g. equation 34 of Friedman 1978),

δuμ = hμ
ν Luξ

ν. (52)

In the simple case of a static fluid (uμ = e−�∂ t), we find δui =
iωαe−�ξ i for a certain QNM. After linearizing the equation of motion
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Relativistic tidal g-mode resonances in NSNS binaries 2993

(51) and utilizing relation (52), the perturbing Lorentz force reads

δF
μ
B = iωαe−�

4π

[
B2

(∇t (ξ
μe−�) + ξν∇νu

μ
)

+ uμξν + uνξμ

2
∇ν(B2) − (uμξηe2� + ξμuη)∇ν(BηBν)

]

− 1

4π
hμ

η ∇ν(BηδBν + δBηBν) + 1

4π
hμν∇ν(BηδB

η)

+ 1

2π
BηδB

ηuν∇νu
μ, (53)

while the perturbed magnetic field δBμ can be determined by solving
the linearized induction equation (Sotani et al. 2007)

∇t δB
μ = iωα

[ − ξν∂νB
μ − ξνμ

νηB
η − uμξνB

η∇ηu
ν

+ e�Bν∇ν(e−�ξμ) − e�Bμ∂ν(e−�ξν) − Bμν
νηξ

η

+ uμBνiωαe−�ξν + uμBνξη(∂ηuν + t
νηe�)

− uμBν
η
νt ξη + ξμBr�′] + δBruμ�′e�. (54)

For the magnetic field given by equation (38), the induction equation
gives

∂

∂t
δBμ = iωα

[ − ξ r∂rB
μ − ξ θ∂θB

μ + Bν∂νξ
μ + Bμ�′ξ r

−Bμ∂νξ
ν − Bμν

νηξ
η + uμBνiωαe−�ξν

]
+ δBruμe��′ − μ

tνδB
ν. (55)

Since some terms only appear in the temporal component of the
first-derivative of δBμ, one can make the equations more concise by
separating the temporal component from the spatial, viz.

∂

∂t
δBt = −ω2

αe−2�Bνξν, (56a)

∂

∂t
δBi = −iωα

[
(ξ r∂r + ξ θ ∂θ − �′ξ r + ∂νξ

ν + ξν∂ν ln
√

|g|)Bi

− Bj∂j ξ
i

]
. (56b)

Accordingly, one can integrate the above equations to find

δBt = iωαe−2�Baξa, (57a)

δBi = −
[(

ξ r∂r + ξ θ∂θ − �′ξ r + ∂aξ
a

+ ξ r

(
�′ + λ′ + 2

r

)
+ ξ θ

tan θ

)
Bi − Bj∂j ξ

i

]
. (57b)

Expressions (57) will be used to define the perturbing Lorentz force
in Section 5.1.

Though it is not considered in this work, we would like to point
out the possibility that NSs as a member of a binary may be cold
enough that they contain superconducting matters, which influences
the magnetic properties of the star (Lander 2013) and any resulting
GWs (Suvorov 2021). For example, the force induced from the
field perturbation has different influences to the Lorentz force, and
the induction equation is also altered due to the altered nature of
Ohmic and ambipolar dissipation (Graber et al. 2015). On top of
that, superfluidity increases the frequencies of g modes, e.g. Yu &
Weinberg (2017) found that the frequency of the n = 1, g1 mode
is of the order of a few hundred Hz (even up to 700 Hz) for a
particular EOS with M = 1.4 M� (see their fig. 4). Adding that the
overlap integral is found to be of the same order as the case where the
superfluid is absent (see their fig. 5), we expect a smaller amplitude

for the g1 mode due to its shorter resonance time-scale. Although
the inclusion of superfluidity brings higher order modes into play,
those overtones typically have a much weaker overlap integral (with
respect to the normal fluid case). It may thus not be very plausible
that these overtones can account for tidally-driven crustal failure.

5 MO D E FR E QU E N C Y M O D U L AT I O N S

The introduction of a perturbing force δFμ into the Euler equations
(5) leads to a modulation δω in mode frequencies, while eigenfunc-
tions are left unchanged to leading order (Unno et al. 1979; Bi, Liao
& Wang 2003; Suvorov & Kokkotas 2020). The restriction of the
Euler equation (5) of the unperturbed equilibrium to the hypersurface
orthogonal to uμ, i.e. hμν∇ηTην = 0, gives

(ρ + p)uν∇νu
μ = −hμν∇νp, (58)

from which and equation (52), one can derive the linearized equation

(ρ + p)e−2�ω2ξμ = (δρ + δp)uν∇νu
μ + hμν∇νδp

+ iωe−�[(ρ + p)∇νu
μ + uμ∇νp]ξν

+ iωe−�ξμuν∇νp. (59)

The left- and right-hand sides give, respectively, the kinetic operator
T and the potential operator V that are defined in equation (15). This
equation, with appropriate boundary conditions, forms an eigenvalue
problem for ω2

α .
For an mode with unperturbed frequency ωα , the inclusion of a

perturbing force δFμ on the right-hand side of (59), its eigenvalues
would be amended accordingly by δωα . Substituting ω = ωα + δωα

and focusing on the leading order perturbation terms, (59) gives

2(ρ + p)e−2�ωαξ
μδωα = δFμ, (60)

from which the frequency shift,

δωα = 1

2ωα

∫
primary δFμ

¯ξμ
√−gd3x∫

primary(ρ + p)e−2�ξμξ̄μ

√−gd3x
, (61)

can be obtained. A similar derivation in the Newtonian case can be
found in Unno et al. (1979). Equation (61) is numerically evaluated
for some particular choices of δFμ.

5.1 Magnetic field

As δF is given by the Lorentz force, (53) and (61) yield the expression
of the correction in the frequency for a general magnetic field, which,
after substituting the magnetic field as defined in equation (38) and
adopting the normalization (17), becomes

δωB
α =

(
M�R

2
�

)−1

8πωα

∫
primary

√−gd3x
[ − ω2

αB
2ξμξ̄μe−2�

+ 2BμδBμξ̄ r�′ − ξ̄μ∇ν(BμδBν + BνδBμ)

+ ξ̄ ν∇ν(BμδBμ)
]
. (62)

In Fig. 7, we plot the mode frequency shifts for the l = 2, g1,
and g2 modes (n = 2) with some fixed stellar parameters and EOS
as functions of the poloidal-to-toroidal strength � (top panel). The
range of � is chosen broadly compared to the ratio for a stable
magnetic field configuration (shaded area), which is 10−3 � � �
0.3 (Akgün et al. 2013; Herbrik & Kokkotas 2017). The stability
examined by the energy variation method gives the constraint

B̃φ � 1017
√

B15

(
δ

0.01

)
G, (63)
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Figure 7. Eigenfrequency shifts δωB for the l = 2, g1 − (top panel) and g2

modes (bottom panel) due to the magnetic field as functions of the poloidal-
to-toroidal field-strength ratio �. The shaded areas represent the range of �

for which the magnetic field is stable (Akgün et al. 2013). The black solid lines
mark the ratio � = 0.033, which gives the maximal toroidal field strength for
B� = 1015 G inside the star (equation 63). We have used δ = 0.005 and ρc =
9 × 1014 g cm−3 for EOS APR, SLy, and WFF1-3, whose masses are 1.21,
1.27, 0.86, 1.14, and 1.04 M�, respectively.

on the toroidal strength, which implies � � 0.033 (black line) for
a magnetar-level surface field strength B� ∼1015G. This constraint
on the strength of toroidal component becomes loose for larger δ

(Akgün et al. 2013; Herbrik & Kokkotas 2017). On the other hand,
we find that the Virial limit on the field strength of ∼1018 G inside
the star (Lai 2001; Lattimer & Prakash 2007; Reisenegger 2009)
corresponds to � � 5 × 10−4, which is a weaker constraint than that
coming from stability considerations. Unless � � 1, magnetic fields
of the order �1015 G are needed to noticeably shift the g1-mode
frequencies for any EOS, though marginally weaker (though still
strong) fields of order �1014 G can significantly adjust the g2-mode
frequencies. Given that the g1 mode typically oscillates at ∼100 Hz,
the (rotating frame) frequency becomes negative when the ratio �

is less than the value (black line) that implies the maximal toroidal
strength for B� = 1015G, indicating the onset of instability. Moreover,
the frequency shifts for overtones (n > 1) are less sensitive to � than
g1 modes, resulting from nodes of displacements in the region where
the toroidal component of magnetic field is non-trivial. The coupling
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Figure 8. g1-mode frequencies: the purple continuous line is for unperturbed
star, while the rest for magnetized ones with different strengths of the magnetic
field B� as a function of δ. We set � = 1.0 (top panel), � = 0.3 (middle panel),
and � = 10−3 (bottom panel). The background star is constructed by EOS
APR4 and has the central density of 8 × 1014 g cm−3.

between these modes and the structure of magnetic field is thus more
tenuous. For g2 modes, a toroidal-to-poloidal ratio � of �0.01 is
needed in order that δωB becomes negative; and the shifts are always
positive (for stable values of �) for g3 modes, though not shown here.
Fig. 8 shows modified mode frequencies of g1 modes of a specific
star for the cases � = 1.0 (top panel), 0.3 (middle panel), and 10−3

(bottom panels), for various values of B�, as functions of δ. There ω0

denotes the unperturbed frequency. As δ � 0.01, the absolute values
of frequency corrections increase as the stratification weakens, i.e. δ

is lower, in that unperturbed frequencies in the denominator of the
right-hand side of (62) converges to zero faster than the numerator.

It is noticeable that the corrections are more severe for less compact
stars when a purely poloidal (� = 1) field is considered, as shown in
Fig. 9. For instance, defining the compactness as C = M1.4/R10, we
see that for B� = 1015G, δ = 0.005, and EOS SLy, the correction for
the g1 mode is δωB = 42.40Hz for the model with C = 0.461, while
it is δωB = 20.32Hz for the model with C = 0.729. Additionally, we
find fitting relations for the effect of magnetic field on the g1 modes
as

δωB ≈ B2
15e

(c1 ln δ+c0)(d1C+d0) Hz. (64a)

The fitting coefficients for different EOS are summarized in
Table 2.

5.2 Tidal forces

The tidal force generated by the companion, as exerted on the
primary, reads

δF T
μ = Mcomp

a3
(ρ + p)∇μ(r2Y22). (65)

The equation for the frequency shift driven by this force is found to
be

δωT
α = Mcomp

2ωαa3

∫
primary(ρ + p)∇μ�T ¯ξμ

√−gd3x∫
primary(ρ + p)e−2�ξμξ̄μ

√−gd3x
. (66)

This form is used in equation (30). The tidal force modifies the
eigenfrequencies of QNMs via the interaction mediated by the
pressure (hence density) variation. Consequently, it leads to minute
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Figure 9. Magnetic-driven modifications in eigenfrequencies of l = 2, g1

mode as functions of stratification δ (top panel), and the compactness C
(bottom panel), respectively. The markers in the upper panel are the numerical
results for the star of each EOS that has central density of 8 × 1014 g cm−3,
while the markers in the bottom panel represent the stars described in Fig. 1
with fixed δ = 0.005. We have taken B� = 1015 G and EOSs APR4, SLy, and
WFF1-3 are included. In both plots, the rigid lines are the fitting results of
corrections in magnetic frequencies for each EOSs.

Table 2. Coefficients of the fitting functions (64a) for the magnetic-
driven frequency modifications.

APR4 SLy WFF1 WFF2 WFF3

c1 − 0.493 − 0.492 − 0.498 − 0.494 − 0.495
c0 0.279 − 0.289 1.112 0.547 0.624
d1 − 3.489 − 3.848 − 3.707 − 3.480 − 5.150
d0 5.126 4.811 5.645 5.213 5.937

frequency corrections (∼0.01 per cent) for g modes since g modes
only perturb the pressure profile slightly.

5.3 Rotation

We treat the rotation of the star as a perturbation over the non-
spinning equilibrium, since the Coriolis force is proportional to the
square of the angular velocity, and thus a slow perturbation, to linear
order, does not induce any hydromagnetic changes to the background
structure (Hartle 1967). We also omit the spin–orbit interaction.
A (uniform) rotation � introduces a gtφ component to the metric,
causing frame dragging. When a slow rotation is considered, this
effect is small and we therefore ignore it in this work. On top of the
metric corrections, rotation also introduces the axial component ,

u
μ
rot = �e−�∂φ, (67)

to the four-velocity, when we are working in the inertial frame. The
axial velocity u

μ
rot adds an extra term to equation (52), resulting in

δuμ = i(ωα + m�)e−�ξμ, (68)

and thus leads to a perturbing force,

δF r
R = 2(ρ + p)e−2�ωα�(mξr − ire−2λ sin2 θξφ), (69a)
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Figure 10. Coefficients C12 for g1 modes (top panel), C22 for g2 modes as
functions of compactness C assuming EOS APR4 (red curves), SLy (yellow
curves), and WFF1-3 (purple solid, dashed, and dotted curves, respectively).
We fix δ = 0.005. Markers on each curve are models pointed out in Fig. 1.

δF θ
R = 2(ρ + p)e−2�ωα�(mξθ + i sin θ cos θξφ), (69b)

δF
φ
R = 2(ρ + p)e−2�ωα�

(
mξφ − i

ξ r

r
− 2i cot θξθ

)
. (69c)

Therefore, the relativistic leading order rotational corrections in the
mode frequencies having the expression

δωR
α = −m�(1 − Cnl), (70)

with

Cnl = 1

M�R2
�

∫
primary

(ρ + p)e�+λr2l

× [ − e−λ(V̄nlWnl + W̄nlVnl) + VnlV̄nl

]
dr. (71)

In the Newtonian limit, this agrees with that of Unno et al. (1979)
and Strohmayer (1991).

Fixing δ = 0.005, we plot Cnl of g1 modes (C12, top panel)
and of g2 modes (C22, bottom panel) as functions of compactness
the mean density of the star in Fig. 10. The values for C12 and
C22 differ only slightly (Yoshida & Lee 2000; Passamonti et al.
2009; Doneva et al. 2013), e.g. C12 = 0.11 and C22 = 0.112 for
the star of WFF1 EOS that has 1.4 M�. On the other hand, we
find that Cn2 depends only slightly on stratification δ for n �
5, e.g. the difference between the values of C12 for δ = 0.001
and 0.01 is ∼0.001 (per cent level at most). The insignificant
dependence on δ of C12 has also been shown in Gaertig & Kokkotas
(2009).

6 C RU STAL STRAIN

Having considered modulations in mode eigenfrequencies by tidal
and magnetic fields, and the (slow) rotation of the equilibrium in
Section 5, we now turn to investigate the maximal strain exerted on
the stellar crust as a result of resonant g-mode displacements.

Time-varying displacements ξ between the material elements of
the NS generates a stress. However, in GR, the total strain is not
only due to the displacement, and there is a contribution from the
perturbation of the metric to the strain tensor (Carter & Quintana
1972, 1975; Xu, Wu & Soffel 2001), whose total form reads

σμν = 1

2

(∇μξν + ∇νξμ

) + 1

2
hη

μhκ
ν δgηκ

= 1

2
(∂μξν + ∂νξμ + δgμν) − σ

μνξσ , (72)
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Figure 11. Maximal crustal strain σmax due to g1 modes for APR4, SLy,
and WFF1-3 EOS as functions of C. The grey dashed line represents the von
Mises criterion by Baiko & Chugunov (2018) and Horowitz & Kadau (2009).
We have taken δ = 0.005.

where we retain just the first order terms in the second line of the
equation. Oscillations may lead to a crust failure for large enough
stresses, which can be probed by the commonly used ‘von Mises
stress’ criterion, coming from classical elasticity theory (Landau &
Lifshitz 1959). Defining the strain as (Johnson-McDaniel & Owen
2013; Andersson et al. 2019)

σ ≡
√

1
2 σμνσ̄ μν, (73)

then the von Mises criterion implies that the crust breaks if σ exceeds
some critical threshold, σ max. In a recent semianalytic lattice stability
models of Baiko & Chugunov (2018), they calculate the threshold
as σ max ≈ 0.04 while Horowitz & Kadau (2009) follow molecular
dynamics simulations to find σ max ≈ 0.1 for low-temperature stars.
We adopt the former in this article with a remark that if the latter
had been adopted, the amplitudes of resonantly-excited modes would
need to be much higher to instigate failure.

Equation (72) and definition (73) indicate that the stress generated
by the displacement ξα is proportional to its amplitude qα , which
evolves according to equation (19a). Therefore, we have

σα(t) =
√

2
∑

α

√
qα(t)q̄α(t)σα, (74)

where σα is the unit strain caused by ξα (i.e. for qα = 1) and the
pre-factor

√
2 is attributed to the duality of modes with ω and −ω.

Taking crust as the part of star with 0.9R� < r < R�, in Fig. 11
we plot the maximal values of strain strain σ max in the crust due to
the (l = m = 2) g1 modes for several EOS, where the stratification
is taken to be δ = 0.005. This latter value in particular is typical in
the literature for mature NSs (Reisenegger 2009; Xu & Lai 2017).
As such, relation (32) implies that g1 modes with tidal coupling
strength �8 × 10−5 may be capable of generating a crustal strain
that exceeds the von Mises criterion provided ωM ∼0.003 for g1

modes. We therefore conclude that tidal resonances in NSNS binaries
can excite g modes to the point that the crust may yield, which can
have important implications for observations of precursors of short
gamma-ray bursts (Tsang et al. 2012; Suvorov & Kokkotas 2020).
This latter aspect will be covered in detail in paper II.

In addition to low-order g modes, it has been shown by Passamonti
et al. (2021) that the excitation of f modes before the merger, though
not resonantly instigated, can generate a strain that meets the von

Mises criterion. For instance, we find the strain σ max = 0.107 for the
f mode of a particular primary with the SLy EOS and M = 1.27 M�.
However, only within less than 10 ms prior to the merger can σ max hit
the critical value of 0.04. Though the excited f modes are irrelevant
to the precursors, their influences on the (phase of) GW waveforms
may be measured with future GW detectors (see, e.g. Schmidt &
Hinderer 2019; Pratten, Schmidt & Hinderer 2020).

7 D ISCUSSION

The tidal field sourced by the companion as part of an NSNS binary
perturbs the primary, leading to QNM excitations. In particular,
as the perturbing frequency matches to the frequencies of certain
QNMs, they will be brought into resonance, during which the mode
amplitudes increase rapidly (Lai et al. 1994b; Kokkotas & Schafer
1995). Though mode resonances happen all during the inspiral, those
that occur in the final stages are of particular interest in that modes
with higher frequency couple more strongly to the tidal field, meaning
larger amplitude become available during an appropriate resonance
time-scale. If there is one resonantly excited mode that stresses the
crust to the point beyond it cannot respond elastically, the crust
may yield. For magnetized stars, the energy released by crustal
failure is likely to generate electromagnetic flares (Tsang et al. 2012;
Suvorov & Kokkotas 2020), which, in turn, offers a probe into the
NS progenitor.

Our investigation on potential crust failure during the resonance
between the tidal-driving frequency and the g modes of a strongly
magnetized primary (B� ∼1015G), is divided into three parts: (i)
Tidal excitation increases the mode amplitude to a maximum value
that depends on the coupling strength of QNMs [see the fitting
equation (32) for l = 2, g1 modes, where the magnetic frequency shift
and stellar rotation are ignored]. (ii) Mode frequencies are modified
by magnetic fields, which become insignificant for purely poloidal
fields with B� � 1015G for l = 2, g1 modes (Fig. 8; though if � � 1
weaker fields can still non-trivially modulate the spectrum); by tidal
fields sourced the companion (equation 30), which are included only
for completeness since they are negligibly small (�0.01 per cent)
for g modes; and by the (uniform) rotation (equation 70). (iii) The
maximal strain during the resonance is estimated by the maximal
amplitude of QNMs (equations 32 and 74).

Previous studies on tidally-driven crustal fracture use the Keplarian
orbit, quadruple formula for GWs, tidal effects encoded in the Newto-
nian potential, and the stellar normal modes in the Newtonian theory
(Tsang et al. 2012; Tsang 2013; Suvorov & Kokkotas 2020). In our
calculation, several extensions are considered to better understand
the realistic applicability of the mechanism, including 3 PN orbital
evolution, relativistic pulsations, and several realistic EOS that pass
the constraints set by GW170817 (Abbott et al. 2018). Our main
results regarding the plausibility of g modes breaking the crust are
summarized in Fig. 11.

Note that we have focused on g-mode resonances, though we
include (slow) stellar rotation, which enriches the pulsation spectrum
with r modes. The frequencies of these latter modes are comparable
with those of g modes when the star rotates slowly, and thus may
also be of interest in this scenario. In addition, our estimation on the
maximal strain available in the g-mode resonances could be improved
to better clarify the physical conditions under which crustal failure
is possible. Namely, g-mode resonances are influenced by various
parameters, including the mass of the primary M� and the companion
Mcomp (or the mass ratio q between them), stratification δ of the
primary, rotation frequency ν of the primary, characteristic magnetic
strength B�, and the poloidal-to-toroidal strength �. An intensive
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investigation of g-mode resonances over a multidimensional param-
eter space spanned by these parameters are, therefore, important to
constrain the physical conditions that allow a large enough strain that
may cause crust yielding. A forthcoming paper in this series aims to
make progress in this direction.
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