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It was recently shown, that in a class of tensor-multiscalar theories of gravity with a nontrivial target
space metric, there exist scalarized neutron star solutions. An important property of these compact objects
is that the scalar charge is zero and therefore, the binary pulsar experiments can not impose constraints
based on the absence of scalar dipole radiation. Moreover, the structure of the solutions is very complicated.
For a fixed central energy density up to three neutron star solutions can exist—one general relativistic and
two scalarized—which is quite different from the scalarization in other alternative theories of gravity. In the
present paper we address the stability of these solutions using two independent approaches—solving the
linearized radial perturbation equations and performing nonlinear simulations in spherical symmetry.
The results show that the change of stability occurs at the maximum mass models and all solutions before
that point are stable. This leads to the interesting consequence that there exists a stable part of the scalarized
branch close to the bifurcation point where the mass of the star increases with the decrease of the central
energy density.
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I. INTRODUCTION

Perhaps the most widely studied models of compact stars
in alternative theories of gravity are the scalarized neutron
stars in the Damour-Esposito-Farese (DEF) scalar-tensor
theory of gravity [1,2]. The reason is that these were the
first models that offered the possibility to have a theory
perturbatively equivalent to general relativity (GR), and
thus no constraints from the weak field observations can be
imposed, while still allowing for large deviations in the
strong gravitation regime due to a nonlinear development
of the scalar field. This mechanism for development of a
nontrivial scalar field is possible for other compact objects,
such as black holes [3–8], but it requires either some not
very realistic astrophysical conditions, or further modifi-
cations of the Hilbert-Einstein action such as the inclusion

of curvature invariants. For neutron stars, the matter itself
can act as a source of the scalar field due to the nonzero
trace of the energy-momentum tensor, and thus scalarized
neutron stars became naturally the primary target for
investigating the possible effects of nontrivial scalar hair
and its observational implications.
Scalarization can produce very large deviations from

GR, but in the standard DEF model it leads to the emission
of scalar dipole radiation that is severely limited by the
binary pulsar observations [2,9–12]. An elegant way to
evade these constraints is to consider a nonzero scalar field
mass, that suppresses the scalar dipole radiation [13–16].
Another more sophisticated and also viable approach is
to allow for the presence of multiple scalar fields. This is
possible in the tensor-multiscalar theories (TMST) of
gravity that are the generalization of the standard scalar-
tensor theories to multiple scalar fields. These theories are
mathematically self-consistent and well posed, and can
pass through all known experimental and observational
tests [17–21]. Moreover, (quantum motivated) higher-order
generalizations of GR often predict the existence of
multiple scalar fields [17,22].
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In TMST different kinds of interesting compact objects
can be constructed including solitons [19,23], mixed
soliton-fermion stars [20], and topological and scalarized
neutron stars [21,24,25]. The variety of solutions is con-
trolled mainly by the choice of target space for the scalar
fields φ and the metric defined on it, and the choice of the
map φ ∶ spacetime → target space. In particular, for a
nontrivial map φ ∶ spacetime → target space where the
target space is a maximally symmetric three-dimensional
space (S3, H3, or R3), there exists nontopological, sponta-
neously scalarized neutron stars in this theory [24]. These
are mathematically similar to topological neutron stars [21],
but with an important difference; the value of the scalar
field at the center of the star is zero and thus the topological
charge vanishes. A very important property of these
solutions is that they have a zero scalar charge, and thus
no emission of scalar dipole radiation is possible.
Therefore, the strong observational constraints on the
standard scalar-tensor theories obtained on the basis of
the binary pulsar observations simply do not apply for the
TMST under consideration that allows for strong possibly
observable deviations from GR.
As discovered in [24], the scalarized TMST neutron stars

show a very interesting property related to the uniqueness of
the solutions. This constitutes in the fact that for a fixed
central energy density up to three neutron star solutions can
exist—one GR solution with zero scalar field and up to two
scalarized solutions. This is in sharp contradiction with the
standard scalar-tensor theories [1] where only one scalarized
neutron star solution can exist for a given central energy
density. The preliminary stability analysis performed in [24]
based on the turning pointmethod, suggested that all three of
the solutions are stable (where they exist). In the present
paperwego further by performing a stability analysis (both a
linear and nonlinear one) in order to determine the (in)
stability of the scalarized neutron stars. Radial perturbations
of neutron stars in scalar-tensor theories have already been
studied in [26,27] while the linear stability of TMST for
topological neutron stars was examined in [25].
In Sec. II we give a brief overview of the theory of

scalarized neutron stars and in Sec. III we present the
background neutron star solutions. The stability of these
solutions is examined in Secs. IV and V in the linear and
nonlinear regimes respectively. Finally, the conclusions are
presented in Sec. VI.

II. NEUTRON STARS IN TENSOR-MULTISCALAR
THEORIES OF GRAVITY

In this sectionwewill briefly describe the basics of TMST
and especially the subclass of these theories that allows for
the construction of scalarized neutron stars. For a more
extensive discussion,we refer the reader to the original paper
where these solutions where constructed [21].
The most general action of TMST in the Einstein frame

can be written in the form [17,18]

S ¼ 1

16πG�

Z
d4

ffiffiffiffiffiffi
−g

p ½R − 2gμνγabðφÞ∇μφ
a∇νφ

b − 4VðφÞ�

þ SmðA2ðφÞgμν;ΨmÞ; ð1Þ

where G� is the bare gravitational constant, ∇μ and R are
the covariant derivative and Ricci scalar respectively, both
associated with gμν. VðφÞ ≥ 0 denotes the potential of the
scalar fields and Ψm represents, collectively, the matter
fields. The theory is equipped with N scalar fields φa that
define a map φ ∶ spacetime → target space, where the
target space is a N-dimensional Riemannian manifold EN
with γabðφÞ as a positively-definite metric defined on it.
The function AðφÞ is the conformal factor connecting the
metrics in the Einstein frame ðgμνÞ and the physical Jordan
frame ðg̃μνÞ via the relation g̃μν ¼ A2ðφÞgμν. In our calcu-
lations we will adopt the Einstein frame for mathematical
simplicity while all final quantities will be transformed to
the physical frame. Unless otherwise specifies, tilde will
denote the quantities in the Jordan frame.
By varying the action (1) with respect to the metric and

the scalar fields, we obtained the following field equations
in the Einstein frame

Rμν ¼ 2γabðφÞ∇μφ
a∇νφ

b þ 2VðφÞgμν
þ 8πG�

�
Tμν −

1

2
Tgμν

�
;

∇μ∇μφa ¼ −γabcðφÞgμν∇μφ
b∇νφ

c þ γabðφÞ ∂VðφÞ∂φb

− 4πG�γabðφÞ
∂ lnAðφÞ

∂φb T; ð2Þ

where γabcðφÞ denotes the Christoffel symbols of the target
space metric γabðφÞ. The Einstein frame energy-momen-
tum tensor Tμν satisfies the following conservation relation

∇μT
μ
ν ¼ ∂ lnAðφÞ

∂φa T∇νφ
a: ð3Þ

The energy-momentum tensor in the Jordan frame is
given by T̃μν ¼ A−2ðφÞTμν. We only consider perfect fluid
stars in our analysis and thus the energy density, the
pressure, and the four-velocity are connected in the two
frames by ε ¼ A4ðφÞε̃, p ¼ A4ðφÞp̃, and uμ ¼ A−1ðφÞũμ,
respectively.
Since we are interested in static, spherically-symmetric

and asymptotically-flat solutions, the metric takes the
following general form

ds2 ¼ −e2ΓðrÞdt2 þ e2ΛðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð4Þ

where the metric function ΛðrÞ is related to the mass
enclosed within the circumferential radius r via
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e−2Λ ¼ 1 −
2mðrÞ

r
: ð5Þ

The four-velocity of a generic fluid moving radially is

ũμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ðe−Γ∂t þ ve−Λ∂rÞ; ð6Þ

with the characteristic strength v.
The simplest setup that can lead to the existence of the

desired scalarized solutions is the following [24]. We
consider three scalar fields φa ¼ fχ;Θ;Φg, with the target
space manifold being S3, H3, or R3. Thus the three-
dimensional target space metric takes the following form

γabdφadφb ¼ a2½dχ2 þH2ðχÞðdΘ2 þ sin2ΘdΦ2Þ�; ð7Þ

where Θ and Φ are the standard angular coordinates
on the two-dimensional sphere S2, and the parameter a
is related to the curvature of S3 and H3. The function
HðχÞ represents the target space geometry; for spherical
geometry S3, HðχÞ ¼ sin χ, for hyperbolic geometry H3,
HðχÞ ¼ sinh χ, and finally for flat geometry R3, HðχÞ ¼ χ.
We will only consider theories where the coupling function
AðφÞ and the potential VðφÞ depend only on χ, which in
turn allows the equations for Θ and Φ to separate. This
guarantees that the spacetime will be spherically symmetric
in both the Einstein and the Jordan frames for the ansatz
defined below.
In this paper we choose a nontrivial map φ such that the

field χ is assumed to depend on the radial coordinate r
while Θ and Φ are independent from r and are given by
Θ ¼ θ and Φ ¼ ϕ [21,24]. This ansatz is compatible with
the spherical symmetry and in addition, ensures that the
equations for Θ and Φ are satisfied.
Using the ansatz stated above and the general form of the

field equations (2), the dimensionally reduced field equa-
tions governing the neutron star equilibrium solutions can
be derived. Since they are somewhat lengthy and also not
the main focus of the present paper, we will not present
them here and refer the reader to [24]. They have to be
supplemented with boundary conditions and we consider
the standard ones—regularity at the center of the star and
asymptotic flatness. Thus, we impose Γð∞Þ ¼ 0,
Λð∞Þ ¼ 0, and χð∞Þ ¼ 0, while at the stellar center
Λð0Þ ¼ 0 and χð0Þ ¼ 0. As a matter of fact for a target
space being S3, the scalar field χ can have a more general
boundary condition at the center χð0Þ ¼ nπ with n ∈ Z
being the stellar topological charge [21,25]. In the present
paper, though, we will be focusing only on nontopological-
scalarized neutron stars and thus consider n ¼ 0.
At infinity the scalar field χ behaves as

χ ≈
const
r2

þOð1=r3Þ: ð8Þ

In this expansion, the 1=r term is missing and thus the
scalar charge is zero. This implies that these starts do not
emit any scalar dipole radiation and therefore they comply
with the binary pulsar observations by construction.
Furthermore, since the leading-order term in the expansion
is proportional to 1=r2, the ADMmasses in both frames are
the same.

III. THE BACKGROUND SOLUTIONS

Here, we will briefly present the behavior of the back-
ground solutions that will be later evolved. More details can
be found in [24].
Since we want to construct scalarized neutron stars, the

conformal factor function AðχÞ has to be chosen accord-
ingly. More precisely, it should satisfy the following
conditions

∂A
∂χ ð0Þ ¼ 0;

∂2A
∂χ2 ð0Þ ≠ 0: ð9Þ

Taking these conditions into account, we employ the
following standard form of the conformal factor

AðχÞ ¼ eβαðχÞ; ð10Þ

where αðχÞ is a function of the scalar field and can be, for
example, a periodic function such as sin2 χ, or simply χ2. It
can be easily shown that the coupling function with these
choices for αðχÞ satisfies the conditions (9).
The dimensionally-reduced field equations together with

the above mentioned boundary conditions are solved
numerically using a shooting method. The shooting param-
eters are the central values of the scalar field derivative
ðdχ=drÞð0Þ and the metric function Γð0Þ. They are deter-
mined by the conditions that χ and Γ tend to zero at
(numerical) infinity.
Figure 1 shows the neutron star mass M as a function of

the central energy density ε̃c for a conformal factor AðχÞ ¼
expðβ sin2 χÞ and the three possible choices of HðφÞ. In
this figure, we used a hybrid equation of state (EOS) to
account for the stiffening of the matter at nuclear density
ρ̃nucl ¼ 2 × 1014 g cm−3, where the pressure and the inter-
nal energy are given by

p̃ ¼ K1ρ̃
Γ1 ; ε̃i ¼

K1

Γ1 − 1
ρ̃Γ1−1; for ρ̃ ≤ ρ̃nucl; ð11Þ

p̃¼K2ρ̃
Γ2 ; ε̃i¼

K2

Γ2−1
ρ̃Γ2−1; for ρ̃> ρ̃nucl: ð12Þ

The energy density and the internal energy are related to
each other via ε̃ ¼ ρ̃ð1þ ε̃iÞ. This equation of state clearly
does not reach the two solar-mass barrier, but it was widely
used for example in the nonlinear simulations of stellar
evolution in scalar-tensor theories [28–32]. Since our
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nonlinear code for examining the stability is based on
[31,32] we decided to keep this EOS for consistency. We
have performed calculations for other piecewise polytropic
EOS [33] and the results remain qualitatively the same.
As one can easily check, the GR neutron star solutions

with zero scalar field are always solutions of the field
equations (2) if it obeys the conditions (9). At a certain
energy density ε̃critc , the GR solution loses stability and a
new sequences of scalarized solutions branch out. Loosely
speaking, this can be viewed as a second-order phase
transition between nonscalarized and scalarized neutron
stars. As discussed in [24], ε̃critc is controlled only by the
values of β=a2 and it is independent on the particular form
of the coupling function (as long as it allows for scalariza-
tion). These scalarized solutions coexist with the GR
solutions indicating nonuniqueness and they are energeti-
cally favorable. However, at a particular higher value of the
central energy density, the scalarized branch of solutions
merges again with the GR one and the neutron stars with
nonzero scalar field cease to exist. With the decrease of
β=a2 the range of central energy densities, where scalarized
solutions exist, gets larger and the deviations from GR
increase. It is interesting to note a well-known fact in scalar-
tensor theories—the scalarization increases the maximum
mass and thus an EOS that in GR leads to neutron star
masses lower than the two solar-mass barrier, can reach
above this threshold in the presence of a nontrivial scalar
field. What is different from all the other examples of
scalarized neutron stars in standard (massless) scalar-tensor
theories, though, is that for the TMST solutions the scalar

charge is zero. Thus, they cannot be constrained by the
binary pulsar observations and allow for large deviations
from GR.
For larger values of β (e.g., β ¼ −1), the mass of the

scalarized neutron stars increases monotonically as the
central energy density increases until the maximum of mass
is reached, and after that the mass keeps on decreasing until
the branch merges with the GR solutions. On the other
hand, for lower values of β, after the first bifurcation point
the mass of the scalarized neutron stars increases whereas
ε̃c decreases. This happens until a minimum value of ε̃c is
reached and after that the behavior of the branch is similar
to the larger β case. This different behavior of the smaller β
branch implies that at certain lower values of ε̃c, there exist
simultaneously three solutions—two scalarized ones and
one solution with zero scalar field, which indicates non-
uniqueness. This is a new result that has not been observed
in standard scalar-tensor theories.
We should note that the particular choice of the coupling

function only deforms the scalarized branch, while keeping
the position of the bifurcation points unaltered [24]. That is
why, even though we have presented here the Mðε̃cÞ
dependence only for AðχÞ ¼ expðβ sin2 χÞ, the results are
qualitatively the same for other couplings such
as AðχÞ ¼ expðβχ2Þ.
Below we will study the stability of the scalarized

solutions with two independent approaches—by examining
the linearized field equations and by considering the full
system of nonlinear field equations in spherical symmetry.
Even though the former approach should in principle
constitute a subclass of the latter one, we have decided
to apply both of them in order to have an independent
verification of (in)stability especially taking into account
the observed very interesting nonuniqueness of solutions.

IV. LINEAR SCHEME

A. Perturbation equations

To derive the perturbation equations for the radial
stability analysis, in the field equations we impose pertur-
bations of the form

fðt; rÞ ¼ f0ðrÞ þ δfðt; rÞ; ð13Þ

where f represents a perturbed variable which in our case is
the metric functions, the Jordan frame pressure p̃ and
energy density ρ̃, and the scalar fields χ, Θ and Φ.
The perturbations of the scalar fields Θ and Φ are

decoupled from the other perturbations and satisfy the
same equation, namely

∇μðsin2 χ0∇μδFÞ ¼ 0; ð14Þ

where either δF ¼ δΘ or δF ¼ δΦ and ∇μ is the covariant
derivative with respect to the background solution. It is not

1 2 3 4 5 6 7 8 9 10

1015

0.5

1

1.5

2

2.5

FIG. 1. The mass as a function of the central energy density for
the fundamental branch of scalarized neutron stars possessing
nodeless scalar field. Solutions for the cases with AðχÞ ¼
expðβ sin2 χÞ and HðχÞ ¼ fsin χ; χ; sinhðχÞg are shown. The
values of the parameters are fixed to a2 ¼ 0.1 and
β ¼ f−1;−1.5g. The neutron stars with zero scalar field are
plotted with a black line.
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difficult for one to see that the perturbations ofΘ andΦ can
not lead to instabilities. Indeed, let us consider a perturba-
tion of the form δF ¼ uðrÞeiωt. The equation for δF
reduces to

ω2 sin2 χ0r2eΛ0−Γ0uþ ðsin2 χ0eΓ0−Λ0r2u0Þ0 ¼ 0; ð15Þ

where the prime denotes differentiation with respect to the
radial coordinate r. Multiplying this equation by u and
integrating by parts by taking into account that the
perturbations are finite at the center of the star and at
infinity, we find

ω2

Z
∞

0

sin2 χ0eΛ0−Γ0r2u2

¼
Z

∞

0

sin2 χ0eΓ0−Λ0r2ðu0Þ2dr ≥ 0: ð16Þ

In other words ω2 ≥ 0 and we can conclude that the
perturbations of Θ and Φ cannot develop instability. Thus
we have to focus only on the couples perturbations of the
metric, the fluid, and the scalar field χ.
The static background functions are denoted by a

subscript “0” in f0 and the time-dependent radial pertur-
bations are represented by δf. As a matter of fact, the fluid
perturbations can be expressed in terms of the Lagrangian
displacement ζ ¼ ζðt; rÞ as we will see below.
In a perturbed state, the star pulsates around the spheri-

cally-symmetric equilibrium configuration, with the line
element as

ds2 ¼ −e2Γ0þ2δΓdt2 þ e2Λ0þ2δΛdr2 þ r2ðdθ2 þ sin2θdφ2Þ:
ð17Þ

The equations governing the fluid perturbation ζ and the
scalar field perturbation δχ are given as

ðε̃0þ p̃0Þe2Λ0−2Γ0 ζ̈þðε̃0þ p̃0ÞδΓ0 þ ½Γ0
0þαðχ0Þχ00�ðδε̃þδp̃Þþδp̃0 þαðχ0Þðε̃0þ p̃0Þδχ0 þ β̃ðχ0Þðε̃0þ p̃0Þχ00δχ¼ 0; ð18Þ

− e−2Γ0 δ̈χ þ e−2Λ0δχ00 þ e−2Λ0

�
Γ0
0 − Λ0

0 þ
2

r

�
δχ0 þ e−2Λ0χ00½δΓ0 − δΛ0� þ

�
−

2

r2

�
d
dχ

H2ðχÞ
�

χ0

þ 2

a2
∂χVðχ0Þ

− 8πG�
αðχ0Þ
a2

A4ðχ0Þðε̃0 − 3p̃0Þ
�
δΛ −

�
1

r2

�
d2

dχ2
H2ðχÞ

�
χ0

þ 1

a2
∂2
χVðχ0Þ þ 4πG�

βðχ0Þ
a2

A4ðχ0Þðε̃0 − 3p̃0Þ

þ 16πG�
α2ðχ0Þ
a2

A4ðχ0Þðε̃0 − 3p̃0Þ
�
δχ − 4πG�

αðχ0Þ
a2

A4ðχ0Þðδε̃ − 3δp̃Þ ¼ 0; ð19Þ

where dot and prime represent derivatives with respect to time and radial coordinates, respectively, and αðχÞ ¼ d lnAðχÞ
dχ and

β̃ðχÞ ¼ d2 lnAðχÞ
dχ2 . These equations represent a system of coupled, second-order wave equations for the perturbations ζ and δχ

and in theHðχÞ ¼ sinðχÞ case they reduce to the ones in [25]. The perturbations of the metric functions, the energy density,
and the pressure in terms of ζ and δχ are as follows:

δΛ ¼ a2rχ00δχ − 4πG�A4ðχ0Þðε̃0 þ p̃0Þe2Λ0rζ; ð20Þ

δε̃ ¼ −ðε̃0 þ p̃0Þ½r−2e−Λ0ðeΛ0r2ζÞ0 þ δΛ� − ½ε̃00 þ 3αðχ0Þðε̃0 þ p̃0Þχ00�ζ − 3αðχ0Þðε̃0 þ p̃0Þδχ; ð21Þ

δp̃ ¼ c̃2sδε̃; ð22Þ

δΓ0 ¼ 1

r
½1 − 2a2HðχÞ2 þ r2ð8πG�A4ðχ0Þp̃0 − 2Vðχ0ÞÞ�e2Λ0δΛ

þ re2Λ0

�
−∂χVðχ0Þ − 2

a2

r2
HðχÞ d

dχ
H þ 16πG�αðχ0ÞA4ðχ0Þp̃0

�
δχ þ a2rχ00δχ

0 þ 4πG�e2Λ0rA4ðχ0Þδp̃; ð23Þ

where c̃2s is the sound speed in the Jordan frame and is
defined by c̃2s ¼ dp̃0

dε̃0
.

The boundary conditions at the center of the star are
derived from the requirement for regularity of the
perturbations and we have ζðt;r¼ 0Þ¼ 0 and

δχðt; r ¼ 0Þ ¼ 0. Similar to the pure GR case, the
Lagrangian perturbation of the pressure Δp̃ has to vanish
at the surface of the star. Only the perturbation of
the scalar field δχ can propagate outside the star
while ζ vanishes there. For large distances δχ has to
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satisfy the radiative (outgoing) asymptotic condition,
expressed as

∂tðrδχÞ þ ∂rðrδχÞ ¼ 0: ð24Þ

B. Results linear stability

To perform the stability analysis in the linear regime, we
convert the linearized wave equations (18) and (19) into a
form more suitable for numerical analysis by adapting a
standard approach from pure GR [25,34]. Namely, we
introduce a new dimensionless function

Zðt; rÞ ¼ ðε̃0 þ p̃0Þrζe2Λ0 : ð25Þ

Since this function is zero at the stellar surface where ε̃0 and
p̃0 vanish, applying the boundary conditions is easier in
terms of Z.
To evolve the perturbation equations (18) and (19) in

time, we use the leapfrog method. As initial data for δχ we
use a Gaussian pulse which is located several neutron star
radii away from the stellar surface, with zero initial velocity
at t ¼ 0. Z is set to be zero initially and is always zero
outside the star by construction. It will remain zero until
the δχ pulse reaches the star and will get excited only
then through the coupling of the fluid and scalar field
perturbations.
Using the method described above, we solved the system

of equations for different forms of HðχÞ and AðχÞ for
different values of β. We found that for all of the considered
scalarized neutron-star branches, the perturbation δχ decays
in time for the scalarized models before the maximum of
the mass, which implies the branch is stable up to this
point.1 Whereas, for neutron star models located after the
maximum of the mass, δχ grows exponentially which
clearly indicates instability. For smaller values of β (for
example the β ¼ −1.5 branch in Fig. 1) an interesting
observation has been made. In the region where two
scalarized solutions exist for the same central energy
densities, it was found that both solutions are stable.
This implies that at these central energy densities, three
radially stable solutions exist simultaneously: one general
relativistic and two scalarized solutions. Even more inter-
estingly, in the part of the scalarized branch just after the
bifurcation point, the mass increases with decreasing
central energy density while the neutron stars is still stable.
Figure 2 shows the scalar perturbation δχ taken far

outside the star (at r ¼ 50 M⊙), and Z taken inside the star
(at r ¼ 1 M⊙) as functions of time for three representative
scalarized neutrons stars belonging to the β ¼ −1.5 branch
in Fig. 1. The former is the scalar radiation taken at large

distance outside the star, whose amplitude is related to the
energy flux. The latter visualizes the fluid motion inside the
star, which consists of quasinormal modes. The (in)stability
of the central compact object therefore leads to damping
or exponential growth of these perturbation variables. In
accordance, in case of stable solutions the oscillation
frequencies are the same for both perturbations since the
system of equations is coupled. The top figure depicts the
aforementioned functions for a star from the initial part of
the branch where the mass increases with a decrease of the
central energy density. The middle figure refers to a star
from the part of the branch where the mass increases as
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FIG. 2. The evolution of the scalar field perturbations δχ at
r ¼ 50 M⊙, and the matter displacement Z at r ¼ 1 M⊙ with
AðχÞ ¼ eβ sin

2 χ , HðχÞ ¼ sin χ, a2 ¼ 0.1 and β ¼ −1.5. Three
models are considered, including two stable (top and middle
panel) and one unstable (bottom panel). These are models A1,
A2, and A4 listed in Table I and discussed in detail in Sec. V.

1Let us point out that contrary to the GR case, the radial
oscillations in TMST will have an amplitude decaying in time
because the scalar field carries away energy to infinity.
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central energy density increases, but having an energy
density smaller than the solution with maximum mass.
Finally, the bottom figure represents the perturbations of an
unstable star with central energy density slightly higher
than the maximum-mass solution. As one can see, after a
few milliseconds the perturbation function δχ shoots off
exponentially. The time at which instability sets in reduces
for stars with higher central energy density. Here we will
not comment in detail on the frequencies of the radial
oscillations since the focus of the paper is on the stability,
but our analysis shows that, as expected, these frequencies
decrease monotonically with the increase of the stellar mass
and they cross zero exactly for the maximum-mass models.
The fact that the critical point of stability is the point of

the maximum mass has a simple physical explanation.
Indeed, when the frequency passes through zero it means
that there is a static perturbation transforming the equilib-
rium state with ε̃c to another, infinitesimally close equi-
librium state with ε̃c þ δε̃c, with the same mass M. This in
turn means that dM

dε̃c
¼ 0 where the frequency is zero.

V. NONLINEAR SCHEME

Having done the linear analysis of the stability of
scalarized models, we now turn to address the issue within
fully nonlinear framework. Among the advantages of the
nonlinear analysis is that one can access more information
about how the instabilities grow and saturate. As a whole,
the evolutionary equations in TMST (Sec. VA) resemble
those in DEF theories with some additional terms owing to
the nontrivial geometry of target spaces. It thus justifies
the appliance of the numerical approach (reconstruction
method and high-performance shock-capture algorithm)
that has been implemented in DEF theories in [31,32] to
TMST. We construct a grid adequate for our purpose in
this work (Sec. V B) for solving the evolutionary equa-
tions. It has been checked that the results summarized in
Sec. V C show only slight deviations by doubling the
resolution.

A. Evolution equations

The Euler equation,

∇μT̃μν ¼ 0; ð26Þ

can be presented as a first-order flux conservative system
[35,36]

∂tUþ 1

r2
∂r½r2

α

X
fðUÞ� ¼ sðUÞ; ð27Þ

constituting the conserved quantities U ¼ fD; τ; SrÞg and
the corresponding fluxes fðUÞ and sources sðUÞ. The

Jacobian of this (differential equation) system, ∂fðUÞ∂U , offers
information about the characteristic speeds of the

conserved quantities. Defining the conserved quantities
and the fluxes via

D ¼ A4eΛffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ρ̃; ð28aÞ

Sr ¼ A4v
1 − v2

ðε̃þ p̃Þ; ð28bÞ

τ ¼ A4ε̃

ð1 − v2Þ − A4p̃ −D; ð28cÞ

and

fD ¼ Dv; ð29aÞ

fSr ¼ Srvþ A4p̃; ð29bÞ

fτ ¼ Sr −Dv; ð29cÞ

we find the source terms

sD ¼ DeΓðψ þ ηvÞAd lnA
dχ

; ð30aÞ

sSr ¼ ðSrv − τ −DÞeΓþΛ

×

�
8πrA4p̃þ m

r2
þ e−ΛA

d lnA
dχ

η − rVeff

�

þ eΓþΛ A
4p̃m
r2

þ 2eΓ−Λ
A4p̃
r

− 2reΓþΛSrηψA2a2

þ 3eΓA5p̃
d lnA
dχ

η − eΓþΛA4p̃rVeff

−
r
2
eΓþΛðη2 þ ψ2Þðτ þ A4p̃þDÞð1þ v2ÞA2a2;

ð30bÞ

sτ ¼−ðτþA4p̃þDÞreΓþΛðð1þv2Þηψþvðη2þψ2ÞÞA2a2

−eΓA
d lnA
dχ

½DvηþðSrv− τþ3A4p̃Þψ �: ð30cÞ

In addition, it has been illustrated in [31] that the
characteristic speeds, determined by fðUÞ and U, for the
conservative system in DEF theories are exactly the same
as those in GR due to their independence on the coupling
function A. In our formulation for TMST, we stick with the
same definition of fðUÞ and U as [31], indicating that the
characteristic properties for the system (27) are identical
to GR.
Having assumed Θ ¼ θ and Φ ¼ ϕ, the nonlinear

evolution equation for the scalar fields reads

□χ −
2H
r2

∂H
∂χ −

1

a2
∂V
∂χ ¼ −

4π

a2
∂ lnA
∂χ T; ð31Þ
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which can be reduced to two first-order decoupled equa-
tions having the form

_η¼ e−Λ

A
ðAeΓψÞ0−reΓþΛηða2A2ψη−4πsrÞ−ψηeΓA

d lnA
dχ

;

ð32aÞ

_ψ ¼ e−Λ

Ar2
ðAeΓr2ηÞ0 − reΓþΛψða2A2ψη − 4πsrÞ

− ψ2eΓA
d lnA
dχ

−
4πeΓ

Aa2
d lnA
dχ

ðτ − srvþD − 3A4p̃Þ

−
eΓ

Ar2a2
d
dχ

ðr2VeffÞ; ð32bÞ

with ψ ¼ e−Γ _χ and η ¼ e−Λχ0. The effective potential is
defined as

Veff ¼ V þ a2H2ðχÞ
r2

; ð33Þ

where the second term on the right-hand side attributes to
the geometry of the target-space manifold. The Einstein
equations reduce to two linearly-independent equations,

Γ0 ¼ e2Λ
�
m
r2
þ4πrðsrvþA4p̃Þþa2r

2
A2ðψ2þη2Þ− rVeff

�
;

ð34aÞ

m0 ¼ 4πr2ðτ þDÞ þ a2r2

2
A2ðψ2 þ η2Þ þ r2Veff ; ð34bÞ

relating the spatial derivative of the metric functions to the
fluid quantities and the scalar field.

B. Numerical setup

The code used in this work to solve the above system of
nonlinear evolution equations is a modification of the
GR1D code [32,37] (for the DEF theory version of
GR1D, readers can refer to, e.g., [31,38–40]). In this
spherical-symmetric simulation, the computational domain
ranges from the stellar center to r ¼ 10000 km (∼1000
times the radius of the star), securing that the radial
boundary is sufficiently far away from the strong-field
region where the spacetime is well approximated by
Minkowski metric. The grid used has uniform size of
30 m from center to r ¼ 40 km and the grid size increases
exponentially from r ¼ 40 km toward the outer boundary
in the rate that the number of grid points amounts to 10000.
There are, therefore, ∼330 grid point inside stars. At the
center and the outer boundary, the boundary conditions are
applied to every metric functions and fluid variables.
The radial velocity v is antisymmetric across the origin
since the radial fluxes vanish there, while the remaining

variables are symmetric. All variables are symmetric about
the outer edge.
We probe the (in)stability of a specific equilibrium by its

responses to two sorts of perturbation. Firstly, we do not
perturb artificially any quantities (Γ, Λ, χ, ...), but only the
error due to numerical truncation serves as perturbation to
the equilibrium. We note that due to its randomness and
smallness, the truncation error has been shown appropriate
initial input for analyzing the stability of solutions (see,
e.g., [41,42]). Secondly, we impose a Gaussian perturbation
to the density profile ρðrÞ, which peaks at r ¼ R⋆=2 and is
set to be zero at the surface and the center. Here R⋆ is the
stellar radius. We find that both stable and unstable
solutions react in a similar manner to both types of
perturbations if we keep the amplitude of the Gaussian
perturbation of ρ small enough. On the other hand, unstable
solutions will collapse into a black hole instead of drifting
to a stable configuration when this amplitude exceeds some
critical value (see below). The results presented in the next
section are subject to truncation error unless stated other-
wise, since this is sufficient for proving (in)stability of a
given solution as discussed above.

C. Results

We examine the stability of scalarized neutron stars
along the sequences of equilibrium models depicted in
Fig. 1. To balance the completeness of our results and the
compactness of this paper, we choose without loss of
generality some symbolic models with H ¼ sin χ to illus-
trate our results, whose properties are listed in Table I.
In Fig. 3, we summarize the evolution of ε̃c of models

A1–A6, where each history is arranged in the order of the
initial values of ε̃c. The models A1 and A2 oscillate about
the equilibrium slightly, whereas the model A3 shifts a bit

TABLE I. Properties of symbolic models with the target space
geometry HðχÞ ¼ sin χ and the coupling function
AðχÞ ¼ expðβ sin2 χ=2Þ. There are two classes of the chosen
models, where models in the “A” class are solutions for β ¼ −1.5
and models in the “B” class are solutions for β ¼ −1. The second,
third, and fourth columns are, respectively, the central energy
density, the radius, and the (baryon) mass of stars.

Model ε̃c ðg=cm3Þ Radius (km) Mass ðM⊙Þ
A1 5.65364 × 1014 10.0876 1.00017
A2 5.69327 × 1014 10.9379 1.68717
A3 1.52979 × 1015 11.0621 2.04260
A4 1.60004 × 1015 11.0094 2.26437
A5 2.51809 × 1015 10.2366 2.26429
A6 3.11633 × 1015 9.7595 2.15068
B1 1.58276 × 1015 10.4074 1.39231
B2 2.78566 × 1015 9.5503 1.63797
B3 2.87078 × 1015 9.4966 1.63802
B4 3.69972 × 1015 9.0108 1.60768
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toward left and oscillates around a nonzero residual with
respect to its initial value. In Fig. 4 we plot the residue as a
function of the grid size, where we see that the former
converges to zero at the rate of second order with increasing
resolution. The results for A1–A3 reflect that the segment,
which is non-GR and yet reaches the maximal mass, is
stable. The stability is lost when the maximal mass is
reached, and we observe that an unstable scalarized
solution will undergo a period of oscillation, and then
gradually settle into a stable, scalarized one but with
smaller central energy density; for instance, the point
representing A4 on upper panel of Fig. 3 drifts toward
left then oscillates around another point on the curve. We

note that the baryon mass remains constant along the
evolution. The same procedure is seen for the Gaussian
perturbation with small amplitude mentioned in the pre-
vious section.
The unstable models A5 and A6 also show the defor-

mation into a stable model with same baryon mass. In
particular, the translation of model A5 from the initial
unstable star to the stable one is shown by the evolution of
the radial profiles of the baryon density ρ̃ and the scalar
field χ (top panel of Fig. 5). One can observe that the
material part of the star settles to the final state at ∼34 ms,
while χ has already reached to the final profile at ∼23 ms.
The development of the instability is depicted by the
evolution of eεc and the central value of scalar field χc
(bottom panel of Fig. 5), where the magnified windows
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FIG. 3. Top: The non-GR part of the sequence of solutions with
HðχÞ ¼ sin χ, β ¼ −1.5 and a2 ¼ 0.1, along which the six
models A1-A6 in Table I are marked by different colors. The
magnified window shows that A3 and A4 models have, respec-
tively, slightly smaller and larger mass than the maximal mass,
where the instability kinks in. Bottom: Evolutions of central
energy density of A1-6.
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material part of star settles to the final state at ∼34 ms, while χ
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model A5 the central energy density ε̃c is plotted as a function of
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show the onset of the instability and the following
saturation is apparent in the main figure. On the other
hand, the evolution of models B1–B4 are given in Fig. 6,
which also confirms that the non-GR segment left to the
maximal mass, is stable and the segment right to the
maximal mass is unstable. We note that in general an
unstable neutron star could migrate to a stable star with
same baryon mass but less compact, or collapse to a black
hole, i.e., there should be a third channel that an unstable
star collapses into a black hole. Although our test trunca-
tion error does not give rise to such a channel, a sufficiently
large Gaussian input can cause a collapse. In particular, we
find that the unstable star will collapse into a black hole if a
Gaussian perturbation having the peak value of ≳5 ×
1010 g=cm3 is imposed on top of the density profile ρðrÞ
for the specific model A5.
Since the solutions to HðχÞ ¼ sin χ; χ, and sinh χ differ

only quantitatively while remaining qualitatively the same,
it is expected that the stability properties for each branches
do not change among these three choices of HðχÞ. In
practice, we confirm this hypothesis by analyzing the
stability of some representative models of each branches,
and conclude the same—a model lighter than the maximal
mass is stable, otherwise is unstable.
Having evolved and checked stability for a large number

of models, we find that each sequence contains exactly one
stable segment and one unstable, converging towards the
maximum mass models. The non-GR parts of the stable
segments for β ¼ −1.5 can be further divided into two
classes: one before the central energy density reaches the
minimal value, and one after. It is of particular interest that

the scalarized models belonging to the part of the branch
before the minimal ε̃c are stable even though they have
larger masses for smaller ε̃c. It indicates roughly that these
models are “glued together” more by the nontrivial scalar
field rather than by the self-gravitating fluid. In some sense,
this is also the reason why the maximal mass of the
solutions in TSMT (also in DEF theories) is larger than
the predicted one by GR.

VI. CONCLUSIONS

In the present paper we have investigated the (in)stability
of scalarized neutron stars in tensor-multiscalar theories.
These models posses two very intriguing properties. First,
their scalar charge is vanishing leading to zero scalar dipole
radiation. Therefore, no constraints can be imposed by the
binary pulsar observations, contrary to the DEF model in
standard scalar tensor theories. Second, there exists a region
of nonuniqueness of the scalarized solutions themselves, i.e.,
for a certain range of central energy densities two scalarized
solutions can coexist with the GR (zero scalar field) one.
Clearly, this interesting structure calls for an investigation of
the stability. We used two approaches in order to be able to
confirm independently the results—solving the linearized
perturbation equation and addressing the full nonlinear
evolution in spherical symmetry. The equations governing
the evolution of the scalar field and the metric were derived
independently in the considered class of tensor-multiscalar
theories and they were solved numerically.
The linear stability analysis showed, that for all combi-

nations of parameters we have studied, the critical point for
stability occurs at the maximum of the mass. Thus the
scalarized branches before this point are stable, indepen-
dent on whether they posses a region of nonuniqueness
in terms of the central energy density or not. This is a very
interesting conclusion leading to the fact that there is a part
of the branch where the total mass of the neutron stars
increases with the decrease of the central energy density
that is in sharp difference with GR and even with most of
the known alternative theories of gravity. As expected, the
GR solutions with trivial scalar field loose stability at the
point of the first bifurcation [24]. Their stability is restored
once the scalarized branch merges again with the GR one
(only in case the second bifurcation point is before the
maximum mass of the GR sequence of course).
It is interesting to note, that similar to the standard scalar-

tensor theories with one scalar field, it is possible for a
range of central energy densities where no stable solution
exist (neither scalarized nor GR-like one) in this case. This
happens because the second bifurcation point is before the
maximum mass of the GR sequence. Thus, between the
point of the maximum of the mass of the scalarized
solutions and the second bifurcation point all the solutions
are unstable. This resembles in a way the case when we
have an equation of state with phase transitions and the
transition between one matter phase to the other happens
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FIG. 6. Top: Stationary solutions with HðχÞ ¼ sin χ, β ¼ −1
and a2 ¼ 0.1. The marks represent the four models B1–4 in
Table I. The magnified window shows that B2 and B3 models
have, respectively, slightly smaller and larger mass than the
maximal mass, where the instability kinks in. Bottom: Evolution
for models B1–B4.
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with a jump in central energy density. A profound study on
this region and the related phenomenology is a project that
is underway.
In the fully nonlinear investigation, we again identified the

parts on the sequence of scalarized models that are unstable
and the results agree perfectly with the ones from the linear
perturbation analysis. A particular merit of the nonlinear
treatment is that apart from demonstrating the development
of the instability we can follow the evolution towards a final
stable state. The transition from an unstable model to a stable
onewith the same baryonmass is numerically revealed in our
simulations. However, the dynamics (damping timescale of
instabilities, the emission via the scalar channel during the
drift from an unstable model to a stable one, etc.) behind
the phenomenon is not addressed in the present work. The
knowledge of the detailed dynamics is crucial in connecting
the instabilities of the objects discussed here to observations,
thus research towards this direction will be helpful providing
possible constraints on TMST.
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