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Abstract
The spontaneous scalarization during the stellar core collapse in the massive
scalar–tensor theories of gravity introduces extra polarizations (on top of the
plus and cross modes) in gravitational waves, whose amplitudes are determined
by several model parameters. Observations of such scalarization-induced gravi-
tational waveforms therefore offer valuable probes into these theories of gravity.
Considering a triple-scalar interactions in such theories, we find that the self-
coupling effects suppress the magnitude of the scalarization and thus reduce
the amplitude of the associated gravitational wave signals. In addition, the self-
interacting effects in the gravitational waveform are shown to be negligible
due to the dispersion throughout the astrophysically distant propagation. As
a consequence, the gravitational waves observed on the Earth feature the char-
acteristic inverse-chirp pattern. Although not with the on-going ground-based
detectors, we illustrate that the scalarization-induced gravitational waves may
be detectable at a signal-to-noise ratio level of O(100) with future detectors,
such as Einstein Telescope and Cosmic Explorer.
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1. Introduction

Even though general relativity (GR) has so far withstood all experimental tests [1–4], many
theoretical considerations signal the need of alternative theories of gravity beyond the GR, e.g.
the non-renormalizability of GR [5], and numerous astrophysical and cosmological observa-
tions [6] (see reference [2] for a recent review). An abundance of modified theories of gravity
have been constructed to extend GR to overcome the aforementioned obstacles. Among them,
the most widely explored one may be the scalar–tensor (ST) theories of gravity [7–9] in which
the gravitational interaction is mediated not only by the metric tensor but also by an additional
scalar field.

Due to its simplicity and well-posedness [10, 11], ST theories have been subjected to a
wide range of experimental tests [12–18], while most are performed in the weak-field regime
(mainly in the Solar System) [19–22]. Nonetheless, with appropriate ST parameters and strong
enough spacetime curvature (see, e.g. [23]), strongly-scalarized neutron star (NS) solutions are
energetically favored over the ordinary weakly-scalarized ones [24]. The ST gravity therefore
allows a nonperturbative strong-field phenomenon known as the spontaneous scalarization
[25, 26] in NSs. Such phenomenon induces a non-vanishing dipole charge of the scalar field,
which is stringently constrained by observations of binary pulsar timings [27–30]. However,
in massive ST theories, the introduction of the scalar mass μ� 10−15 eV effectively weak-
ens these experimental constraints on the parameters [31–33] so that the theory leaves more
room for parameters that can lead to strongly-scalarized NS solutions. In addition, the recent
detections of gravitational waves (GWs) have opened a novel window to limit the ST grav-
ity, which has already set severe constraints on the possible models [4, 34–36]. A further
constraint on the ST gravity arises from the equivalence between the Jordan and Einstein
frames [37, 38].

As the evolutionary endpoint of a star, the core collapse to form an NS or a black hole
(BH) constitutes another testbed for the strong-field dynamics of the ST gravities [2, 31, 39].
In particular, if a scalarized proto-NS forms during the collapse, the sharp transition from
the weakly-scalarized star configuration into the strongly-scalarized state generates scalar- or
monopole-polarized GWs, which is a critical feature of the ST gravity that is absent in GR.
Early studies on the spontaneous scalarization and scalar GW production were concentrated
on the massless ST gravity [40–43]. In order to evade the strong experimental constraints
listed above, references [44, 45] initiated a line of studies on the core collapse in the massive
ST theories. In references [46, 47], the theory was further extended to the case with scalar self-
interactions which generically suppressed the degree of the scalarization and the amplitude of
the scalar GW radiation.

However, previous studies only focused on the effects of the even-power scalar self-
interactions [46, 47] defined in the Einstein frame. Odd-power scalar self-interactions have not
been explored yet. Given the importance of the stellar collapse in testing ST gravity by, e.g.
scalarization-induced GW signals that are potentially measurable with the ground-based GW
detectors, any ST model warrants further investigations. In the present paper, we study the core
collapse and the monopole GW radiations in the massive ST theories, including the simplest
odd-power scalar self-interaction in the Einstein frame, viz the triple-scalar coupling effects.
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In order to ensure the stability of the theory, we take the absolute value of the triple-scalar
interaction in the scalar potential. The influence of this scalar interaction on the spontaneous
scalarization and the scalar GW production during the core collapse is explored by considering
two particular collapse progenitors, which have been treated in the massless [43] and massive
[37, 44] ST theories. One of them leads to an NS remnant and the other settles to a BH. We also
consider the impact of the triple-scalar coupling on the astrophysically long-distance dispersive
propagation of the scalar GWs in our Galaxy, which generically leads to the inverse-chirp fea-
ture of the GW signals detected on the Earth. Finally, we assess the detectability of the possible
scalar GW signals in the on-going and up-coming ground-based GW detectors by computing
the corresponding signal-to-noise ratios (SNRs).

The paper is organized as follows. In section 2, we present a brief introduction to the self-
interacting massive ST theories and specify the triple-scalar interaction that is considered. The
equation of state obeyed by the nuclear matter during the stellar core collapse is introduced
as well. In section 3, the setup of our simulations is detailed. We also show the numerical
results of the core collapses with a specific attention paid to the self-interaction effects on
the scalar dynamics and the associated GW waveforms. Section 4 is devoted to studying the
influence of the triple-scalar coupling on the large-distance propagation of the scalar GWs
and the detectability of these GW signals. Finally, we offer our conclusions and some further
discussions in section 5.

2. Formalism

In the ST theories of gravity, the gravitational fields are augmented by an extra scalar field
φ(x) in addition to the spacetime metric tensor gμν(x). In this work, we are interested in the
ST gravity first proposed by Bergmann [48] and Wagoner [49], in which (i) the single scalar
field non-minimally couples to the metric tensor; (ii) the theory is diffeomorphism invariant;
(iii) the variation of the action gives rise to second order field equations; and (iv) the weak
equivalence principle is satisfied [in the Jordan (physical) frame, see below]. In the literature,
the most general action of this class of theories can be written as [2]

SJ =

∫
d4x

√−g
16π

(
F(φ)R − ω(φ)

φ
gμν∂μφ∂νφ− U(φ)

)
+ Sm[ψm, gμν], (1)

in natural units G = c = 1, where F(φ), ω(φ) and U(φ) are continuous and differentiable func-
tions of the scalar field φ with the existence of second-order derivatives, and Sm represents the
action of ordinary matter fields that are collectively denoted by ψm. Note that matter fields cou-
ple to the gravity sector only through the (physical) metric tensor gμν without any dependence
on φ, so that the weak equivalence principle holds.

One can also formulate the same theory in the so-called Einstein’s frame, which relates to
the Jordan frame via a Weyl transformation,

ḡμν ≡ gμν/F(ϕ), (2)

and a redefinition of the scalar field,

dϕ
dφ

:= ±

√
3(F,φ)2

4F2
+

ω

2φF
. (3)
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The action equation (1) reads

SE =

∫
d4x

√−ḡ
16π

(
R̄ − 2ḡμν∂μϕ∂νϕ− 4V(ϕ)

)
+ Sm[ψm, ḡμν/F(ϕ)], (4)

in the Einstein frame, where the scalar potential V(ϕ) is related to the one in the Jordan frame
through [37, 38]

V(ϕ) :=U(φ)/(4F2). (5)

One can see that the ST theory in the Einstein frame is specified by the scalar potential V(ϕ)
and the conformal factor F(ϕ). The latter controls the coupling between the scalar field ϕ
and ordinary matters. In the present article, we adopt the following parametrization of the
conformal factor [12, 13, 26]

ln F(ϕ) ≡ −2α0(ϕ− ϕ0) − β0(ϕ− ϕ0)2, (6)

which is nothing but merely the Taylor expansion [26]. Note that the two free dimensionless
parameters α0 and β0 is not only sufficient to determine the first-order post-Newtonian effects,
but also contribute to higher post-Newtonian orders. Moreover,ϕ0 denotes the asymptotic value
of the scalar field at spatial infinity.

Massive scalar fields with a triple-scalar self-interaction have the scalar potential given by

V(ϕ) =
μ2

2h̄2 (ϕ2 + λ|ϕ|3), (7)

where λ is assumed to be positive and the absolute value is taken in the scalar self-
interaction term in order to guarantee the semi-positivity and stability of the potential. Thus,
the asymptotic value of ϕ should naturally be ϕ0 = 0, which is the absolute minimum of
this potential. Moreover, the scalar field mass is fixed to be μ = 10−14 eV, which not only
alleviates the strong constraints from binary pulsars and weak field tests of GR [31, 32],
but also allows the propagating monopole GW signals to be detectable [44, 45] in the
LIGO/Virgo sensitivity window. For the later convenience, we also define a characteristic
frequency

f∗ =
ω∗
2π

≡ μ/(2π h̄) � 2.42 Hz, (8)

which is associated with the scalar mass.

2.1. Spherical collapse

The stellar core collapse into a compact object such as NS and BH marks the end-
point of a massive star with the zero-age main sequence (ZAMS) mass in the range of
10M� � MZAMS � 130M� [51–53] with M� denoting the solar mass. At the end of the
nuclear burning phase of a star, the nuclear matter thermal pressure and the electrons’
degenerate pressure can no longer balance the huge gravitational attracting force [54],
leading to a sudden radial compression of the matter. The collapse increases the cen-
tral (baryon) mass density up to the nuclear density ρnuc � 2 × 1014 g cm−3 [55] beyond
which the compression is halted and the inner core bounces due to the repulsive force
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stemmed from the stiffening of the nuclear matter. The core bounce launches a hydrody-
namic shockwave outwards and a core-collapse supernova explosion (CCSNe) may then be
generated7.

We assume a spherically symmetric ansatz for which the line element is given by [50]

ds2 = −Fα2 dt2 + FX2 dr2 + r2(dθ2 + sin2 θ dφ2), (9)

where X and α are functions of the coordinates r and t. The stellar matter is modeled as the a
perfect fluid whose energy–momentum tensor reads [61]

Tμν = (ρ+ ρε+ P)uμuν + Pgμν , (10)

in the Jordan frame, where ρ, P, ε, and uμ represent the baryon density, pressure, internal energy
and the four-velocity of the nuclear matter, respectively. In order to account for the stiffness
of the nuclear matter and thermal effects experienced by the shock, we would like to follow
references [43–45] to apply the hybrid equation of state (EOS) [55, 62, 63]

P = Pc + Pth, ε = εc + εth, (11)

which comprise the cold parts (Pc, εc) and the thermal parts (Pth, εth). The cold parts are
given by

Pc = K1ρ
Γ1 , εc =

K1

Γ1 − 1
ρΓ1−1, as ρ � ρnuc,

Pc = K2ρ
Γ2 , εc =

K2

Γ2 − 1
ρΓ2−1 + E3, as ρ > ρnuc, (12)

with K1 = 4.9345 × 1014 [cgs], while K2 and E3 are determined by the continuity of the pres-
sure and energy density at ρ = ρnuc. The thermal parts that describe a mixture of non-relativistic
and relativistic gases generate the pressure as Pth = (Γth − 1)ρεth. The nuclear matter EOS
is determined by the three parameters (Γ1,Γ2,Γth), which are fixed to be (1.3, 2.5, 1.35) by
following reference [37].

Our numerical simulations for stellar core collapses are based on the open-source code
GR1D [61], which was originally developed to model the spherically symmetric hydrodynam-
ics in GR by exploying the high-resolution shock capturing scheme [64, 65]. The code was
extended to include a massless scalar field in reference [43] and a massive one in references [44,
45], and was further implemented with an even-power scalar potential in references [46, 47].
Here we adopt all dynamical equations, grid types and boundary conditions in our simulations
identical to those in reference [44].

3. Simulations and results

We focus on two specific progenitors of supernovae (pre-SN) with primordial metallicities
of MZAMS = 12M� (denoted by WH12) and MZAMS = 40M� (denoted by WH40) from the
catalog of realistic non-rotating pre-SN models of Woosley and Heger (WH) [66], respectively.
In massive ST gravity [43], as well as in GR [67], it has been shown that WH12 will collapse

7 After emanating from the inner core, the out-going shock will then be stalled by the inflowing material. If the shock-
wave successfully revives by some mechanisms, such as the standing accretion shock instability [56, 57], and the
neutrino heating [58, 59], the explosion will be instigated and lead to a CCSNe. The mechanism that accounts for the
revival is still an on-going problem (see, e.g. [60], for a recent review and the references therein).
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Figure 1. Evolutions of the central value of the scalar field ϕc during the core-collapse
into an NS for the model WH12 with the self-interaction couplings of λ = 0, 102, 103,
104 and 106, respectively, where the vertical dashed line denotes the time of the stellar
core bounce.

to form an NS remnant, while WH40 will eventually result in a BH after a stage of proto-NS
(though see later).

The yet undermined ST parameters α0 and β0 in the conformal factor of equation (6) are
chosen to allow strong scalarization in proto-NSs so as to generate significant scalar GW sig-
nals in our simulations. Their specific values will be given along with the detailed discussion
of these two cases in section 3.1. Note that the initial value of the scalar field at every grid
point is taken to be zero.

3.1. Numerical results on core collapse to neutron stars

For the particular progenitor WH12, the ST parameters are fixed to be α0 = 10−2 and
β0 = −20, which trigger the strong scalarization in the remnant NS as shown in references
[37, 44, 46]. Our main interest here is to investigate how the triple-scalar interaction in
equation (7) affects the scalar field dynamics during the core collapse and its subsequently
produced GW signals.

In figure 1, we show the scalar field value at the stellar center as a function of time, i.e.
ϕc(t) ≡ ϕ(t, r = 0). We can see that the strong spontaneous scalarization occurs at the time of
the core bounce, t � 0.038 s, for all triple-scalar coupling strength λ considered. The depar-
ture of the scalar dynamics around the star center from the non-interacting ST gravity (λ = 0)
is found to be inconsiderable for a moderate coupling strength λ � 104. However, when λ
approaches or exceeds ∼106, we can observe the significant suppression in the magnitude of
the scalarization (the green dashed line in figure 1).

The suppression of the spontaneous scalarization is more evident in the rescaled field

σ ≡ rϕ. (13)

According to its definition, the leading-order term of σ reduces to the scalar charge χ in the
massless ST gravity [43], which is defined as the coefficient of the 1/r term in the asymptotic
behavior of the scalar field at spatial infinity, i.e.

ϕ =
χ

r
+ O(r−2). (14)

6



Class. Quantum Grav. 38 (2021) 245006 D Huang et al

Figure 2. Scalar GW signals for WH12 extracted at the radius rex = 5 × 104 km for
the self-interaction couplings of λ = 0, 102, 103, 104 and 106, respectively, where the
vertical line on the right plot denotes the characteristic frequency f∗ = 2.42 Hz.

Extractingσ at a fixed distance of rex = 5 × 104 km, in figure 2 we plot σex ≡ σ(rex) in the time
domain (left panel), and the associated Fourier transformed signals σ̃ex( f ) [68] in the frequency
domain (right panel). For the self-coupling up to λ ∼ 102, the difference in σex from the non-
self-interacting ST gravity is negligible. However, when λ approaches ∼103, we begin to see a
mild suppression and a small phase shift. The suppression and the phase shift are enlarged with
increasing λ as a consequence of the frequency-related suppression caused by the scalar self-
interaction (similar to the fashion of reference [46]). Finally, when λ� 106, the scalarization
is reduced from the case without the self-interaction by more than two orders.

In addition, the frequency-domain plot (the right panel of figure 2) shows that the suppres-
sion is more significant for f � f∗ = 2.42 Hz. Due to their smaller group velocities, the low-
frequency modes spend more time propagating out of the (strong) interaction regime near the
star so that they experience more suppressions by self-interactions. To illustrate this effect, we
plot σ at three radii rex = (5, 10, 15)× 104 km with λ = 103 in figure 3. These distances lie in
the wave zone [45] and are much larger than both the reduced Compton wavelength of the mas-
sive scalar λC = c/(2π f∗) and the gravitational radius rG = GMNS/c2 with MNS denoting the
NS mass. In the left panel of figure 3, we see that the time-domain signal becomes much more
oscillatory since the dispersion during the propagation screens out the low frequency modes for
a distant observer, as expected. When transformed into the frequency domain (the right panel
of figure 3), the modes with frequencies higher than f∗ remain unchanged, while the spectra
below this critical frequency decay exponentially. This implies that only the high-frequency
scalar signals can travel astrophysically long distance to be detectable on the Earth. Focusing
on the high frequency signals, the choice of the extraction radius is irrelevant therefore.

3.2. Numerical results on core collapse to black holes

Now we turn to simulation results for the progenitor model WH40. In order for the strong
scalarization to occur in the proto-NS prior to the BH formation, we set the ST parameters as
α0 = 3 × 10−3 and β0 = −5. We shall repeat the above analysis to see the effects of the self-
interaction term in equation (7) on the dynamics of the stellar evolution and the scalar-polarized
GW radiations.

Figure 4 presents the evolutions of the scalar field at the center of the compact objects for the
WH40 progenitor. Obviously, the dynamics is much more complicated than the WH12 model.
We begin our discussion with the non-self-interacting case, i.e. λ = 0. The stellar core bounce

7
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Figure 3. Scalar GW waveforms for WH12 extracted at different radii rex =
(5, 10, 15) × 104 km.

firstly produces a weakly scalarized NS with ϕc ∼ −5 × 10−4 at tw � 0.085 s, which then
transits to a strongly scalarized NS at ts � 0.35 s due to the accretion of ambient materials. In
this particular model, the continuous infalling material makes the stellar core massive enough
to cause the gravitational instability, i.e. the mass of the remnant exceeds the maximal mass
that can be supported by the EOS considered. Eventually, a BH forms at some point tBH, which
depends on λ (see below).

The extent to which the scalarization is triggered and the lifetime of the strongly-scalarized
state (tBH − ts) depend on λ. The left panel of figure 4 shows the cases with a moderate level
of λ, where we see that ϕc goes down to ∼−0.25 at ts, and then the scalarization is progres-
sively strengthened to ϕc ∼−0.35 at the moment right before the BH formation. The strong
scalarization lasts for ∼1.24 s, and is followed by a transient decrease of the scalarization at
tBH in accordance with the BH no-hair theorem. In addition, when λ � 103, we do not see any
visible deviation from the case without self-interactions. As λ increases to �104, the degree
of the scalarization during the strong-scalarization stage is weakened a little, but the duration

8
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Figure 4. Evolutions of the central value of the scalar field ϕc for the progenitor WH40
during the core-collapse into a BH for λ = 0, 102, 103 and 104 in the left panel and
λ = 106 and 108 in the right panel, respectively, where the inset of left panel shows the
scalar field behavior zoomed in on the core bounce part, while ones on the right panel
correspond to the region near the core bounce and the BH formation, respectively.

tBH − ts becomes a bit longer owing to a delay in the BH formation. Such trend continues and
becomes more evident with increasing λ until λ ∼ 106. In the right panel of figure 4, we plot
the case with strong coupling strengths λ = 106 and 108. For λ = 106, the degree of the scalar-
ization is a bit slighter than the aforementioned case with the moderate λ and the lifetime of the
proto-NS becomes very short with tBH − ts � 0.01 s. When λ = 108, we find that the strongly-
scalarized proto-NS stage completely disappears, leading to a scenario that a weakly-scalarized
NS directly collapses to a BH.

Having shown the influence of λ on ϕc, we now turn to investigate how λ affects σ, espe-
cially σex. In figures 5 and 6, we present σex in both the time and the frequency domains. As
illustrated in the left panel of figure 5, we can find clear time-domain signatures corresponding
to the transitions between different stages of the multi-stage BH formation scenario. In the inset
figure, we see a small variation in the amplitude at the retarded time tr ≡ t − rex/c = 0.085 s,
which matches the timing of the core bounce. The sudden drop at tr � 0.35 s and the sharp
peak around tr � 1.59 s reflect the transition from weakly- to strongly-scalarized configu-
rations and the descalarization caused by the BH formation. Moreover, compared with the
non-self-interacting case, the evolution of σex keeps intact for λ � 103. When λ increases to
104, the suppression of the amplitude for GW signals can be seen in both the time and frequency
domains. On the other hand, as shown in the left panel of figure 6, besides the small structure
at the core bounce, we only see some rapid oscillations around the BH formation for λ� 106,
which indicates the disappearance of the strongly-scalarized NS stage. Furthermore, the right
panel of figure 6 illustrates that the scalarization is diminished greatly by several orders for
λ = 106 and 108 in comparison with the case of λ = 0.

4. Scalar GW propagation and its detectability

4.1. Scalar GW signals

In the ST gravity, the scalarization contributes the strain amplitude [3, 70]:

hs = hB − hL, (15)

to the GW signal of the angular frequency Ω, where

hB = 2α0ϕ, (16)

9
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Figure 5. Scalar GW signals in the time domain (left panel) and frequency domain (right
panel) for the progenitor model WH40 extracted at the radius rex = 5 × 104 km for dif-
ferent values of the self-interaction coupling λ = 0, 102, 103 and 104, respectively. The
inset in the left panel illustrates the scalar GWs around the core bounce which generates
a weakly-scalarized NS.

Figure 6. Label is the same as figure, except for λ = 106 and 108. The two insets in the
left panel correspond to the scalar GW signals at the core bounce and the BH formation,
where we have artificially enlarged the field values by a factor of 10 for the case with
λ = 108 in order to make its dynamical evolution clearer.

is the so-called breathing mode which is transverse and scalar-polarized, and

hL =
(ω∗
Ω

)2
hB = 2α0

(ω∗
Ω

)2
ϕ, (17)

is the longitudinally polarized mode, respectively. For a GW interferometer, the detector
responses to the scalarization-induced GW strain through

h(t) = F◦[θ(t),φ(t)]hs(t), (18)

where F◦ ≡ −sin2 θ cos 2φ/2 is the interferometer antenna pattern [3, 71] which depends on
the sky location (θ,φ) of the source in the internal frame of the detector. Note that these two
scalar polarizations share the identical antenna pattern function up to a sign [3, 70], so that they
cannot be distinguished experimentally. For simplicity, we take the sky averaged rms value of

10
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the antenna pattern function [45]

F̄◦ =

√∫∫
dθ dφ sin θF2(θ,φ) =

√
4π/15 (19)

as the canonical value.
Currently, in order for the highly scalarized NSs to evade the strong constraints from the

observation of the orbital decay of binary pulsars such as the pulsar-white dwarf system PSR
J0348 + 0432 [29], we need to impose a lower limit on the scalar mass as μ > O(10−15) eV
[31, 32], corresponding to a lower frequency bound of O(0.1 Hz) via equation (8). The GW
modes above this bound lies in the sensitive range of ground-based GW detectors, such as
LIGO-Virgo [72–74], Cosmic Explorer (CE) [75] and Einstein Telescope (ET) [76]. In the lit-
erature, the detectability of the GW signal in equation (15) for a single detector is characterized
by the corresponding SNR which is defined as follows [77]:

ρ2 = 4
∫ ∞

0
d f

|
˜

h( f )|2
Sn( f )

, (20)

where h̃( f ) denotes the Fourier transformed function of the response in equation (18),
while Sn( f ) is the one-sided noise power spectral density of the instrument given by the
corresponding experimental collaboration.

4.2. Scalar GW propagation

After the scalar GWs (equation (15)) are generated from the stellar core-collapse in our Galaxy,
they propagate over an astronomically long distance of O(10 kpc) before they are detected on
the Earth. According to the action in equation (4), the propagation of the scalar GW far away
from its source can be well approximated by the wave equation in the nearly flat space:⎧⎪⎪⎨

⎪⎪⎩
∂2σ

∂t2
− ∂2σ

∂r2
+

μ2

h̄2 σ +
3λμ2

2h̄2

σ2

r
= 0, as σ � 0,

∂2σ

∂t2
− ∂2σ

∂r2
+

μ2

h̄2 σ − 3λμ2

2h̄2

σ2

r
= 0, as σ < 0,

(21)

where the equation is written in the spherically symmetric coordinate with σ ≡ rϕ. The inter-
action term drops faster than the mass term by one power of r, and the mass term will dominate
after a certain distance. The subsequent long-distance propagation is thus barely affected by
the self-interactions. In this case, the description of the scalar GWs can be further reduced to
the following wave equation without interactions

∂2σ

∂t2
− ∂2σ

∂r2
+

μ2

h̄2 σ = 0, as r →∞. (22)

From this simplified equation, we can obtain the asymptotic behavior of the scalar field. Con-
cretely, when the frequency is below the critical one f∗ = ω/(2π) ≡ μ/(2π h̄) � 2.42 Hz, the
mode damps as the Yukawa-like suppression where ϕ ∼ e−κr/r with κ =

√
μ2 − ω2. In fact,

we have already seen this suppression from the frequency spectra of the scalar GW at different
extraction distances on the right plot of figure 3, in which the GW amplitudes of the modes with
frequencies below the critical one decrease aggressively when the extraction radius becomes
distant. On the other hand, when the frequency is above the critical one, the mode becomes
a propagating out-going wave as ϕ ∼ eikr/r. In this case, the wavelength is predicted to be

11
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k =
√
ω2 − μ2. Since these modes can approach the spatial infinity, we can define the scalar

charge χ as the massless scalar case, just like in equation (14).
As pointed out in references [44, 45], due to the presence of the mass term, the GW sig-

nal becomes more and more oscillatory with time. The dispersive nature of the propagation
introduces tremendous difficulties in the numerical calculations of the GW evolution in space.
In the present work, we adopt the stationary phase approximation (SPA) [69] to evaluate the
scalar GW waveform at large radii. The scalar GW signal at rex can be expanded by the Fourier
series, in which the component with frequency ω reads

σ̃(ω; rex) = A(ω; rex)eiΨ(ω), (23)

where A(ω; rex) and Ψ(ω) are the scalar wave amplitude and phase, respectively. In the limit
of r � rex, the scalar GW signal is highly dispersive and becomes quasi-monochromatic at the
frequency

Ω(t) =
ω∗t√

t2 − (r − rex)2
, for t > r − rex. (24)

Note that this frequency shows the signature of the inverse chirp [44], which means that high-
frequency modes arrive earlier than low-frequency (but still higher than ω∗) ones. Such a
feature is originated from the fact that scalar GW modes with higher frequencies have larger
group velocities, and thus reach us with less time. Furthermore, the SPA method also gives the
following amplitude of the scalar GW at a large radii r [44, 45]

A(Ω; r) =

√
2[Ω2 − ω2

∗]3/2

πω2
∗(r − rex)

A(Ω; rex), (25)

in which the frequency Ω is a function of time t given by equation (24).
As argued in reference [45], for a (quasi-)monochromatic scalar GW signal, the SNR

equation (20) can be estimated as follows

ρ ≈
√

So( f )
Sn( f )

. (26)

Here, the spectral power density of the GW signal is given by

√
So( f ) =

√
Tα0F̄◦

(
A(2π f ; D)

D

)[
1 −

(ω∗
Ω

)2
]

, (27)

where D is the distance between the star and the Earth, while T denotes the duration of the
observation.

4.3. Scalar GW detectability

For the scalar GW signals in the ST gravity, there exist several search strategies [44], such
as monochromatic continuous-wave searches, stochastic searches, and burst searches. Note
that the observable scalar GW signal in the massive ST theory is nearly monochromatic, even
though the waveform near the source is not at all. This universal feature is caused by the scalar
mass term μ which would make the scalar GW signal highly dispersed. Concretely, by inspect-
ing the simplified equation of motion in equation (22), it is obvious that different frequency

12
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modes have distinct group velocities

vg =
dω
dk

=

√
1 −

(ω∗
ω

)2
, (28)

where ω∗ ≡ μ/h̄. Moreover, as the frequency approaches to the critical one, the mode group
velocity becomes extremely small. This fact indicates that, no matter what the original GW
waveform is, after the propagation along an astronomical distance, the signal would be dis-
torted into the one in which modes with the higher frequencies would reach the detector
at the Earth much earlier than those with lower frequencies, which is just the inverse chirp
phenomenon [44] dictated by equation (24). Moreover, since the propagation distance is astro-
nomically long, the signal would last for several decades or even centuries, and the time
lag between different frequency modes would be highly enhanced. As a result, the signal
at the detector would be quasi-monochromatic with the frequency evolution extremely slow.
Typically, for a signal 10 years after its first detection by the optical observation of a super-
nova explosion, we need to wait for several months to see the variation of its frequency
under the current detection precision. Therefore, for a core-collapse supernova that is pos-
sibly detected by optical observations or all-sky GW searches, the best strategy is through
the continuous quasi-monochromatic GW search [44, 45, 47] pointed to the location of that
source, which was originally proposed to detect the GWs from spinning neutron stars and
axion clouds [78]. In this subsection, we present our prediction of the detectabilities of
such source-targeted continuous searches of the scalar GW signals for the progenitor models
WH12 and WH40.

By employing the scalar GW waveforms extracted at rex = 5 × 104 km to equation (27),
we can obtain the spectral power densities for both progenitor models. In figure 7, we
plot

√
So( f ) at several time points after the GW emission with various triple-scalar cou-

pling strengths. Here, the distance between the Earth and the source is assumed to be of
the galactic scale, i.e. D = 10 kpc. Since the signal would keep nearly monochromatic for
the period of O (month), the observational duration is taken to be T = 2 months. For both
WH12 and WH40, we can see that (i) the quasi-monochromatic signal slowly moves to low
frequencies in accord with the inverse-chirp formula in equation (24), (ii)

√
So( f ) varies

within two orders over time for a given coupling strength, and (iii) the triple-scalar self-
interaction suppresses the magnitude of the scalar gravitational radiation generated by the
stellar core collapses. The predicted scalar GW signals are similar to the non-interacting case
for up to λ ∼ 103, whereas we observe a small reduction in the signal amplitude when λ
increases to ∼104. When λ� 106, the scalar-polarized GW is suppressed by two orders for
the WH12 model, while for the WH40 progenitor the suppression is frequency-dependent,
viz the low-frequency modes decrease in amplitude more than the high-frequency part of
the spectrum.

On top of the scalar GW strain of our models, figure 7 also shows the noise curves of the
current LIGO detectors, and the near-future ET and CE experiments, whereby we can estimate
the SNRs of signals. It turns out that, even though the scalar GW signal amplitude of the WH12
model with λ � 104 observed for 2 months in the first 3 years after the core collapse can be
higher than the LIGO noise curve, the SNR in this optimal case can only reach ρ � 2 at most,
which is unlikely to be detected. For other choices of the coupling constant values, progenitor
models and detection times would result in power spectral densities

√
So lower than the LIGO

sensitivity curve, implying that it is impossible to measure them with LIGO. In contrast, with
the future ET and CE detectors, some signals may reach SNRs of ρ ∼ O(100) and remains
visible for several centuries.
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Figure 7. Power spectrum densities of the core collapse into an NS for the progenitor
models WH12 (upper panel) and into a BH for WH40 (lower panel) with the self-
interaction couplings λ = 0, 102, 103, 104 and 106, respectively, where the points of
various types correspond to the inverse-chirp scalar GW signals observed at different
times after the supernova: t = 1, 3, 10, 30, 100, 250, 500, and 1000 years from right to
left on each plot. In comparison, we also plot the noise power spectral density of LIGO,
ET, and CE.

5. Conclusions and discussions

The stellar core collapse provides us with valuable tests of ST theories due to the possible for-
mation of the NS in the intermediate stage or as the final state of the process. The spontaneous
scalarization may be induced in those NS and produces strong scalar or monopole GW signals.
In the present work, we have studied the effects of the triple-scalar self-interaction defined in
equation (7) on the scalar field dynamics and the subsequent scalar GW generation. In order to
achieve this goal, we have performed simulations based on the open-source code GR1D which
is extended to the massive ST gravity with the triple-scalar self-interaction. We have focused
on two specific pre-SN models with the primordial metallicity in the WH list, viz WH12 and
WH40, corresponding to stars with ZAMS mass of 12M� and 40M�, respectively. These two
progenitors are representative of two typical collapse processes; WH12 collapses into an NS,
while WH40 ends up to a BH. The ST parameters α0 and β0 are chosen specifically for each
model so that the strong scalarization can take place in simulations.
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As a result, we have found that the triple-scalar self-interaction can generically suppress
the degree of the scalarization during the collapse, which is consistent with the conclusions
in references [46, 47]. Such suppressions can be shown either from the scalar dynamics at
the center of the star or from the produced scalar GW signals. Furthermore, the suppres-
sion is considerable only when the self-interaction coupling λ becomes sufficiently large,
i.e. λ� 103 for WH12 and λ� 104 for WH40. More interestingly, the self-interaction can
even alter the scalar evolutionary history of the collapse for the WH40 model by completely
eliminating the strongly scalarized stage during the BH formation as λ reaches a critical
value of O(106).

For the massive scalar GWs propagate over astrophysically long distances, the self-
interaction effects have been shown to be negligible, and the dispersion of GWs is solely
determined by the scalar mass. It turns out that scalar GW signals detected on the Earth have
the inverse-chirp feature as that have been suggested by massive ST theories without self-
interactions [37, 44]. We have accessed the detectability of the scalar GW signals produced by
the galactic WH12 and WH40 pre-SN sources by estimating their SNRs. Although it is unlikely
to observe the inverse-chirp signals for both progenitors with the current LIGO detectors, sig-
nals of these two models can reach SNRs of O(100) with the future ET and CE detectors and
remain visible for several centuries.

In this study, our simulations have been performed with fixed nuclear matter EOS parame-
ters and specific values of the ST gravity parameters (α0, β0). However, it is well known that
the nuclear matter property would significantly affect the hydrodynamic evolution of matter
fields during the core collapse [79, 80], which would in turn dramatically modify the dynam-
ics of the scalar field and the generated GW waveforms. Additionally, it has been pointed out
in reference [45] that the stellar collapse scenarios changes with the different choices of the
ST parameters (α0, β0). Especially, as the value of β0 becomes more and more negative, the
degree of scalarization tends to be intensified and the corresponding GW signals are expected
to be stronger. Moreover, there have been several studies on the spectrum of radial quasinor-
mal modes (QNMs) of NSs in the ST gravity theory [81–83]. It is well expected that the radial
QNMs would show themselves in the scalar GW spectrum at the late stage of the stellar col-
lapse. According to the discussion in reference [81] which has also addressed the spontaneously
scalarized NSs with a negative β0, there are two classes of radial QNMs: the pressure-led fluid
modes and the scalar φ-modes. It is seen from the plots of figure 2 in this reference that typical
frequencies of the fluid modes are of O (kHz) and that of the fundamental φ-mode is around
or below 1 kHz, while the damping times of these modes are of O(0.1 − 1) ms. However, in
our simulation, the minimal sampling time interval is only 1 ms, which means that we do not
have enough precision to resolve the QNM signals for both modes. In order to see these modes
clearly, one needs to improve the simulation precision in time interval at least by one to two
orders. Nevertheless, the full exploration of all these aspects is well beyond the scope of the
present article, and will be deferred to the future work.
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